期刊文献+

采用改进粒子群算法与人工神经网络相结合的车辆转向控制研究 被引量:7

Vehicle steering control based on improved particle swarm optimization and artificial neural network
下载PDF
导出
摘要 为了提高车辆转向控制系统输出精度,改善车辆行驶的稳定性,提出了改进人工神经网络PID控制器.创建车辆平面参考模型简图,建立车辆运动参数的数学关系式,推导出车辆横摆角速度的动力学方程式.在传统PID控制器基础上,结合人工神经网络模型,采用改进粒子群算法对人工神经网络PID控制器进行在线优化,动态调整PID控制器参数,实现车辆转向控制系统的最优输出,在不同工况路面进行车辆横摆角速度仿真实验.结果表明:采用改进人工神经网络PID控制器,不仅可以提高车辆转向控制系统的响应速度,而且输出的摆动角速度误差较小.车辆在复杂工况路面行驶,其转向系统采用改进人工神经网络PID控制器,有利于提高车辆行驶的稳定性. In order to improve the output accuracy of vehicle steering control system and improve the stability of vehicle driving,the improved artificial neural network PID controller is proposed.The vehicle plane reference model diagram is created,the mathematical formula of vehicle motion parameters is established,and the dynamic equation of vehicle yaw rate is derived.On the basis of the artificial neural network model based on the traditional PID controller,the improved particle swarm optimization is used to optimize the PID controller online,dynamically adjust the parameters of the PID controller,realize the optimal output of the vehicle steering control system,and simulate the yaw velocity simulation of the vehicle in different working conditions.The results show that the improved artificial neural network PID controller can not only improve the response speed of the vehicle steering control system,but also have a small error in the output swing angle speed.Vehicle running on complex road surface,its steering system uses improved artificial neural network PID controller,which is conducive to improving the stability of vehicle driving.
作者 姚俊 张劲恒 YAO Jun;ZHANG Jinheng(Institute of Electronics and Information,Nanchang University of Technology,Nanchang 330044,China)
出处 《中国工程机械学报》 北大核心 2018年第6期480-485,共6页 Chinese Journal of Construction Machinery
基金 湖南省自然科学基金资助项目(2016JJ0025)
关键词 改进粒子群算法 车辆 转向控制系统 人工神经网络 PID控制器 improved particle swarm optimization vehicle steering control system artificial neural network PID controller
  • 相关文献

参考文献3

二级参考文献22

  • 1周宇奎,谷正气,王和毅.汽车主动四轮转向系统的解耦自适应控制研究[J].机械与电子,2004,22(10):11-14. 被引量:6
  • 2李炎亮,高秀华,张春秋,孙玉波.车载式自行火炮多桥动态转向系统[J].吉林大学学报(工学版),2006,36(3):321-326. 被引量:22
  • 3高秀华,张春秋,李炎亮,王云超.多轮转向系统转向控制模式综述[J].起重运输机械,2006(6):5-8. 被引量:22
  • 4高利,李剑峰.一种车辆主动横摆力矩的神经网络控制方法[J].江苏大学学报(自然科学版),2007,28(1):17-20. 被引量:8
  • 5Furukawa Y,Yuhara N,Sano S. A Review of Four-wheelsteering Studies from the Viewpoint of Vehicle Dynamics and Control[J].Vehicle Systym Dynamics,1989,(18):151-186.
  • 6洪嘉振;贾书惠.多体系统动力学与控制[M]北京:北京理工大学出版社,1996.
  • 7Haug E J. Computer Aided Kinematics and Dynamics of Mechanical Systems,Vol.Ⅰ:Basic Methods[M].Allyn and Bacon,Inc,1989.
  • 8Huh K,Kim J,Hong J. Handling and driving characteristics for six-wheeled vehicles[J].Journal of Automobile Engineering,2000,214(2):159-170.
  • 9Li Y X,Wang Y C,Feng P F. Lateral dynamics of three-axle steering vehicle based zero vehicle sideslip angle control[J]. Advanced Materials Research, 2012,3(2):1682-1687.
  • 10An S J,Lee H Y, Cho W K,et al. Development of steering algorithm for 6WS military vehicle and verification by experiment using a scale-down vehicle[C]∥Proceeding of International Symposium on Advanced Vehicle Control. Taibei, Taiwan: SAE,2006:245-250.

共引文献18

同被引文献63

引证文献7

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部