期刊文献+

基于独立空谱残差融合的联合稀疏表示高光谱图像分类 被引量:4

Joint Sparse Representation Hyperspectral Image Classification Based on Independent Space-spectrum Residual Fusion
下载PDF
导出
摘要 针对高光谱图像分类中存在的空间信息与光谱信息融合问题,提出一种基于独立空谱残差融合的联合稀疏表示高光谱图像分类算法。使用类独立的光谱角初分类图像,获得像元初始标记后按特定条件进行筛选再构造像元邻域空间。提取图像的全局空间信息,并将其引入到空谱联合稀疏表示模型中,使用单独的光谱信息字典与空间信息字典分别进行图像光谱与空间的联合稀疏表示残差计算。在此基础上,使用残差融合算法确定图像类别。实验结果表明,相对SVM、KNN等算法,该算法能够提升高光谱图像的分类精度,且分类结果更稳定。 Aiming at the problem of spatial information and spectral information fusion in hyperspectral image classification,a joint sparse representation hyperspectral image classification algorithm based on independent space-spectrum residual fusion is proposed.Class-independent spectral angles are used to classify the images,and the initial labels of pixels are obtained,then the neighborhood space of pixels is constructed according to the specific conditions.The global spatial information of the whole image is extracted and introduced into the joint sparse representation model of space-spectrum.The joint sparse representation residual of image spectrum and space is calculated by using a separate spectral information dictionary and a spatial information dictionary respectively.On this basis,the residual fusion algorithm is used to determine image classes.Experimental results show that compared with SVM,KNN and other algorithms,this algorithm can improve the classification accuracy of spectral images and the classification results are more stable.
作者 卢佳 保文星 LU Jia;BAO Wenxing(School of Computer Science and Engineering,North Minzu University,Yinchuan 750021,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第1期246-252,共7页 Computer Engineering
基金 国家自然科学基金"基于遥感的宁夏工业固体废物环境监测研究"(61461003) 北方民族大学校级创新项目(YCX1756)
关键词 高光谱图像 联合稀疏表示 全局空间信息 光谱信息 残差融合 hyperspectral image joint sparse representation global spatial information spectral information residual fusion
  • 相关文献

参考文献5

二级参考文献82

  • 1姜青香,刘慧平.利用纹理分析方法提取TM图像信息[J].遥感学报,2004,8(5):458-464. 被引量:54
  • 2李金莲,刘晓玫,李恒鹏.SPOT5影像纹理特征提取与土地利用信息识别方法[J].遥感学报,2006,10(6):926-931. 被引量:32
  • 3Melgani F and Bruzzone L. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1778-1790.
  • 4Valls C G, Shervashidze N, and Borgwardt K M. Spatio- spectral remote sensing image classification with graph kernels[J]. IEEE Geoscienee and Remote Sensing Letters, 2010, 7(4): 741-745.
  • 5Plaza A, Benediktsson J A, Boardman J W, et al.. Recent advances in techniques for hyperspectral image processing [J]. Remote Sensing of Environment, 2009, 113(9): 110-122.
  • 6Chen Yi, Nasrabadi N M, and Tran T D. Hyperspectral image classification using dictionary based sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3973-3985.
  • 7Wright J, Yang A Y, Ganesh A, et al.. Robust face recognition via sparse representation[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 8Dias J M B and Figueiredo M A T. Alternating direction algorithms for constrained sparse regression: application to hyperspectral unmixing[C]. 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Reykjavik, Iceland, 2010: 1-4.
  • 9Deng Wei, Yin Wo-tao, and Zhang Yin. Group sparse optimization by alternating direction method [R]. Department of Computational and Applied Mathematics, Rice University, 2011.
  • 10Wen Y W, Michael K N, and Ching W K. Iterative algorithms based on decoupling of deblurring and denoising for image restoration[J]. SIAM Journal on Scientific Computing, 2008, 30(5): 2655-2674.

共引文献98

同被引文献20

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部