期刊文献+

基于最优传输的网格参数化序列簇生成方法

Grid Parameterized Sequence Clusters Generation Method Based on Optimal Transmission
下载PDF
导出
摘要 利用Ricci曲率流将原曲面上的面元测度前推到目标参数域上形成初始面元测度,对初始面元测度或目标面元测度进行变换,以构造一系列连续变换的面元测度序列,然后计算面元测度间的最优传输映射并构建连续变换的参数化序列簇。通过莫比乌斯变换、曲率强化和重要性驱动3种方式对面元测度进行变换实验,结果表明,相比拟等积方法,该方法可以构造出多种不同的参数化序列簇,并能取得较好的特殊参数化效果。 Using Ricci curvature flow,the original surface panel measure is pushed forward to the target parameter domain to form the initial panel measure.After transforming the initial panel measure or the target panel measure,a series of continuous transformation panel measure sequences are constructed.Then the parameterized sequence clusters of continuous transformation is constructed by calculating the optimal transmission mapping between the panel measures.The transformation experiments are carried out by using Moebius transformation,curvature reinforcement and importance drive,and results show that compared with the Quasi-area method,this method can construct a variety of different parameterized sequence clusters and achieve better special parameterized effect.
作者 夏诗羽 苏科华 陈彩玲 XIA Shiyu;SU Kehua;CHEN Cailing(School of Computer Science,Wuhan University,Wuhan 430072,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第1期264-269,277,共7页 Computer Engineering
基金 国家自然科学基金(61772379)
关键词 参数化序列簇 最优传输映射Ricci曲率流 测度控制 莫比乌斯变换 parameterized sequence clusters optimal transmission mapping Ricci curvature flow measure control Moebius transformation
  • 相关文献

参考文献2

二级参考文献152

  • 1胡国飞,方兴,彭群生.凸组合球面参数化[J].计算机辅助设计与图形学学报,2004,16(5):632-637. 被引量:13
  • 2严寒冰,胡事民.球面坐标下的凸组合球面参数化[J].计算机学报,2005,28(6):927-932. 被引量:7
  • 3Praun E, SweldensW, Schroder P. Consistent mesh parameterizations[A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, 2001. 179~184
  • 4Lee Y, Kim H S, Lee S. Mesh parameterization with a virtual boundary[J]. Computers & Graphics, 2002, 26(5): 677~686
  • 5Farin G. Curves and Surfaces for Computer Aided Geometric Design[M]. 3rd ed. San Diego: Academic Press, 1993
  • 6Pinkall U, Polthier K. Computing discrete minimalsurfaces and their conjugates[J]. Experimental Mathematics, 1993, 2(1): 15~36
  • 7Desbrun M, Meyer M, Alliez P. Intrinsic parameterizations of surface meshes[J]. Computer Graphics Forum, 2002, 21(3): 209~218
  • 8Floater M S. Mean value coordinates[J]. Computer Aided Geometric Design, 2003, 20(1): 19~27
  • 9Levy B, Mallet J-L. Non-distorted texture mapping for sheared triangulated meshes[A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Orlando, 1998. 343~352
  • 10Greiner G, Hormann K. Interpolating and Approximating Scattered 3D Data with Hierarchical Tensor Product B-Splines[M]. In: Meheute A L, Rabut C, Schumaker L L, eds. Surface Fitting and Multiresolution Methods. Nashville, Tennessee: Vanderbilt University Press, 1997. 163~172

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部