期刊文献+

蛋白质制备锂硫电池正极材料的研究

Study on Preparation of Cathode Materials for Lithium Sulfur Battery by Protein
下载PDF
导出
摘要 本文采用同步碳化与活化的方法将鸡蛋碳化制备了三种生物质多孔材料,并将其应用于锂硫电池复合正极材料。研究结果表明:鸡蛋与Na OH溶液混合,在700℃、800℃和900℃下保温4h,可以得到无定型结构的类石墨碳,800℃下制备的多孔材料(Egg-800)孔径较均匀,中孔直径约为4 nm,BET比表面积为205 m2·g^(-1); Egg-800/S正极具有最优的电化学性能,0. 05 C倍率下放电比容量达到899 m Ah·g^(-1),高于Egg-700/S和Egg-900/S的601和730 m Ah·g^(-1);从2 C的高倍率再次回到0. 2 C时,Egg-800/S的放电比容量依旧可以恢复到初始倍率0. 2 C的89%。 In this work,we prepared eggs-derived carbons by the simultaneous carbonization and activation methods,and the porous carbons were applied in lithium-sulfur batteries.The results show that mixing eggs with NaOH solution and then carbonizing at 700℃,800℃ and 900℃ for 4 hours is able to obtain graphite-like carbon with amorphous structure.The porous material prepared at 800℃ has a relatively uniform pore diameter.The mesopores are centered around 4nm,and the BET specific surface area is calculated to be 205m^2·g^-1;Egg-800/S cathode displays the best electrochemical performance,the discharge capacity can reach 899mAh·g^-1 at 0.05C rate,higher than 601 and 730mAh·g^-1 of Egg-700/S and Egg-900/S cathodes respectively;The rate discharge capacity of the Egg-800/S can still recover to 89% of the initial capacity at 0.2C when the current rate returns from high rate of 2C to 0.2C.
作者 王奕文 徐红 卢曼 Wang Yiwen;Xu Hong;Lu Man(School of Shijiazhuang No.1 Middle School,Shijiazhuang 050010, China;School of Materials Science and Engineering,Xi'an University of Technology,Xi'an 710048,China;Shaanxi Key Laboratory of Corrosion and Protection,Xi'an 710048,China)
出处 《山东化工》 CAS 2018年第24期8-10,12,共4页 Shandong Chemical Industry
基金 西省教育厅重点实验室项目18JS069
关键词 生物质 多孔碳 锂硫电池 电化学性能 biomass porous carbon lithium-sulfur batteries electrochemical performance
  • 相关文献

参考文献3

二级参考文献96

  • 1马萍,张宝宏,徐宇虹,巩桂英.聚苯胺包覆对提高单质硫正极材料的性能研究[J].现代化工,2007,27(3):30-33. 被引量:11
  • 2Bruce, P. G,; Freunberger, S. A.; Hardwick, L. J.; Taraseon, J. M. Nat. Mater 2012, 11, 19.
  • 3Ellis, B. L.; Lee, K. T.; Naza, L. F, Chem. Mater. 2010, 22, 691.
  • 4Ji, X.; Nazar, L. F. J. Mater. Chem. 2010, 20, 9821.
  • 5Evers, S.; Nazar, L. F. Acc. Chem. Res. 2012, DOI: 10.1021/ ar3001348.
  • 6Diao, Y.; Xie, K.; Xiong, S.; Hong, X. J. Electrochem. Soc. 2012, 159, A421.
  • 7Kumaresan, K.; Mikhaylik, Y.; White, R. E. J. Electrochem. Soc. 2008, 155, A576.
  • 8Mikhaylik, Y. V.; Akridge, J. R. ,1. Electrochem. Soc. 2004, 151, A1969.
  • 9Kolosnitsyn, V. S.; Karaseva, E. V. Russ. J. Electrochem. 2008, 44, 506.
  • 10Cheon, S. E.; Ko, K. S.; Cho, J. H.; Kim, S. W.; Chin, E. Y. J. Eleetroehem. Soc. 2003, 150, A796.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部