期刊文献+

采用图背包算法的两阶段划分恢复子区域策略 被引量:2

Two-stage Segmentation-restoration Sub-region Strategy Based on Graph Knapsack Algorithm
下载PDF
导出
摘要 随着电网规模的不断扩大,研究恢复子区域的最优划分策略对大停电后缩短系统的恢复时间具有重要意义。本文提出了一种两阶段划分恢复子区域策略。首先,建立以待恢复机组到黑启动机组电气距离最短为目标的机组划分模型,用最短路径算法求解此模型,并根据均衡度指标调整和优化求解结果;然后,在机组划分的基础上,建立以子区域内不平衡功率最小为目标的负荷划分图背包模型,用含连通图约束的背包算法求解此负荷模型;最后,以IEEE39节点系统验证该方法的正确性和可行性。结果表明,所提方法不仅保证了子区域的连通性,而且可使系统恢复时间最短。 With the continuous expansion of power grid,it is of great significance to studying the optimal sub-region segmentation strategy to shorten the restoration time of the system after a blackout.In this paper,a two-stage segmenta tion-restoration sub-region strategy is proposed.First,a unit segmentation model is set up aiming at the shortest electri cal distance between the resume unit and the black-start unit;this model is solved by the shortest path algorithm,and the result is further adjusted and optimized according to the index of equilibrium degree.Then,on the basis of unit seg mentation,a graph Knapsack model of load segmentation is established with the objective of the smallest imbalanced power in sub-regions,which is solved by the Knapsack algorithm with connected graph constraints.The proposed meth od not only ensures the connectivity of sub-regions,but also minimizes the system’s restoration time.Finally,the cor rectness and feasibility of this method are verified by an IEEE 39-node system.
作者 王浩远 么莉 林济铿 刘阳升 WANG Haoyuan;YAO Li;LIN Jikeng;LIU Yangsheng(School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China;College of Electronics and Information Engineering,Tongji University,Shanghai 201804,China)
出处 《电力系统及其自动化学报》 CSCD 北大核心 2018年第12期132-138,共7页 Proceedings of the CSU-EPSA
基金 四川省教育厅重大培育资助项目(13ZC0003) 四川省电力电子节能技术与装备重点实验室开放基金资助项目(szjj2014-013)
关键词 黑启动 子区域划分 含连通图约束的背包算法 电力系统 并行恢复 black-start sub-region segmentation Knapsack algorithm with connected graph constraints power system parallel restoration
  • 相关文献

参考文献8

二级参考文献97

共引文献313

同被引文献27

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部