期刊文献+

一类0-1背包问题的分枝定界DAPSO启发式算法

Branch and bound-DAPSO heuristic algorithm for solving a class of 0-1 knapsack problems
下载PDF
导出
摘要 目的更好地求解一类非线性0-1背包问题,给出计算性能较好的分枝定界-DAPSO启发式算法。方法通过求解线性规划松弛问题来确定最优值的下界,用改进的粒子群优化算法(DAPSO)确定最优值的上界和好的可行解,分枝过程是简单的0-1变量分枝。结果与结论数值结果表明分枝定界-DAPSO启发式算法更好于分枝定界算法,并且它克服了粒子群优化算法(PSO)收敛性的困难。 Purposes-To propose a branch and bound-DAPSO heuristic algorithm for solving a class of nonlinear 0-1knapsack problems.Methods-In aforesaid algorithm,the lower bound of the optimal value was determined by solving linear programming relaxation.Meanwhile,the upper bound of the optimal value and good feasible solutions were determined with a new particle swarm optimization( DAPSO),and the branching was the one of simple 0-1variables.Result and Conclusion-The numerical results show that the branch and bound-DAPSO heuristic algorithm is not only better than the branch and bound algorithm but also overcomes the convergent difficulty of particle swarm optimization( PSO).
作者 段玉红 DUAN Yu-hong(School of Mathematics and Statistics,Ningxia University,Yinchuan 750021,Ningxia,China)
出处 《宝鸡文理学院学报(自然科学版)》 CAS 2018年第4期5-10,共6页 Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金 宁夏自然科学基金项目资助(NZ15056)
关键词 0-1背包问题 可分离凹规划 分枝定界方法 粒子群优化算法(PSO) 线性规划松弛 0-1knapsack problem separable concave programming branch and bound particle swarm optimization(PSO) linear programming relaxation
  • 相关文献

参考文献4

二级参考文献37

  • 1马慧民,叶春明,张爽.二进制改进粒子群算法在背包问题中的应用[J].上海理工大学学报,2006,28(1):31-34. 被引量:34
  • 2刘建芹,贺毅朝,顾茜茜.基于离散微粒群算法求解背包问题研究[J].计算机工程与设计,2007,28(13):3189-3191. 被引量:29
  • 3K. M. Bretthauer, B. Shetty. A pegging algorithm for the nonlinear resource allocation problem.Comput. Oper. Res., 2002, 29: 505-527.
  • 4M. W. Cooper. The use of dynamic programming for the solution of a class of nonlinear programming problems. Nay. Res. Logist. Quart., 1980, 27: 89-95.
  • 5M. W. Cooper. Survey of methods of pure nonlinear integer programming. Manage. Sci., 1981,27: 353-361.
  • 6M. Djerdjour, K. Mathur, H. M. Salkin. A surrogate relaxation based on algorithm for a general class quadratic multi-dimensional knapsack problem. Oper. Res. Left., 1988, 7: 253-258.
  • 7D. Hochbaum. A nonlinear knapsack problem. Oper. Res. Left., 1995, 17: 103-110.
  • 8T. Ibaraki, N. Katoh. Resource Allocation Problems: Algorithmic Approaches. MIT Press,Cambridge, Mass., 1988.
  • 9M. S. Kodialam, H. Luss. Algorithm for separable nonlinear resource allocation problems.Oper. Res., 1998, 46: 272-284.
  • 10D. Li, X. L. Sun, K. McKinnon. A convergent lagrangian and domain cut method for nonlinear knapsack problems. Technical report, Department of Systems Engineering & Engineering, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, 2002. submitted for publication.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部