期刊文献+

基于深度学习的手写数字识别技术应用 被引量:5

Application of Handwritten Digit Recognition Technology Based on Deep Learning
下载PDF
导出
摘要 本文基于深度学习技术搭建卷积神经网络(Convolutional Neural Networks-简称CNN),用MNIST数据集作为训练以及测试样本设计了一个手写数字识别技术应用系统。系统采用ReLu的激活函数,实验结果表明对手写数字的识别准确精度可以达到98.6%。 In this paper, we build a Convolutional Neural Networks(CNN) based on deep learning technology, and designs a handwritten digit recognition system. We use MNIST data set as our training and testing set. ReLu activation function is employed to improve recognition accuracy.Experimental results show that the accuracy of recognition of handwritten digits can be 98.6%.
作者 王梓桥 刘沛丰 郝峰 王铮 崔现伟 WANG Zi-qiao;LIU Pei-feng;HAO Feng;WANG Zheng;CUI Xian-wei(School of Computer Science,North China University of Technology,Beijing 100144)
出处 《数字技术与应用》 2018年第11期78-79,共2页 Digital Technology & Application
关键词 手写数字识别 深度学习 卷积神经网络 handwritten digit recognition deep learning convolutional neural network
  • 相关文献

同被引文献32

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部