摘要
针对一个源于Keller-Segel模型的趋化模型,主要研究其具有单调性、非常数平衡解的存在性。应用全局分岔理论的方法,通过详细的先验估计和计算,证明了在1维空间中,细胞总量任意固定的条件下,趋化模型的单调非常数平衡解的存在性。
For a chemotaxis model which is a variant of Keller-Segel model,the existence of nonconstant monotone steady states is studied.Applying the method of bifurcation theory,by detailed priori estimates and computation,the existence of nonconstant monotone steady states in 1 spatial dimension is proved on the condition of arbitrarily fixed total cell mass.
作者
赵烨
徐茜
刘小林
ZHAO Ye;XU Qian;LIU Xiaolin(Department of Mathematics and Physics,Beijing Institute of Petrol-chemical Technology,Beijing 102617,China;Department of Basic Courses,Beijing Union University,Beijing 100101,China;School of Sciences,Zhejiang A & F University,Hangzhou 311300,China)
出处
《北京石油化工学院学报》
2018年第4期74-78,共5页
Journal of Beijing Institute of Petrochemical Technology
基金
国家自然科学基金(11501031)
关键词
趋化模型
平衡解
存在性
整体分岔
chemotaxis
steady state
existence
global bifurcation