期刊文献+

直流接地极位置对变压器偏磁电流影响分析

Analysis of Influence of DC Grounding Poles on Transformer Partial Magnetic Current
下载PDF
导出
摘要 直流偏磁是现代电力系统发展必须解决的重要问题之一,不仅会造成电力设备本体损伤、继电保护装置误动与拒动,甚至会引发电力系统层面的故障及灾害性事故。直流接地极位置影响周边交流系统直流偏磁电流的分布。文中综述了近年来关于直流偏磁的治理方法,并加以分类,提出了直流偏磁的治理原则及治理方法的适用性建议,利用标准算例,研究了不同接地极位置下直流电流的分布特点和治理规律,最后对相关研究中的进展和存在的问题进行了论述,并指出了今后的研究方向,以期为现代电力系统直流偏磁的治理提供参考。 DC bias magnetization is one of the important issues that must be solved in the development of modern power systems:not only will the power equipment body be damaged,the relay protection device will malfunction or refuse to move,and it may even cause a failure or even a catastrophic accident at the power system level.The position of the DC grounding pole affects the distribution of the DC bias current of the surrounding AC system.The paper first reviewed the methods of DC bias control in recent years,classified them,and proposed the principle of DC bias control.Once again,the applicability suggestion of the method was proposed.Finally,standard examples were used to study the different grounding poles.DC current distribution characteristics and governance rules.At the end of this paper,the progress and existing problems in related researches are discussed,and the future research directions are pointed out in order to provide a useful reference for the control of DC bias in modern power systems.
作者 刘新宇 徐正江 吴伟丽 刘俊 Liu Xin-yu;Xu Zheng-jiang;Wu Wei-li;Liu Jun
出处 《电力系统装备》 2018年第7期73-75,共3页 Electric Power System Equipment
关键词 两种成因 直流偏磁 特性 治理措施 two causes DC bias characteristics control measures
  • 相关文献

参考文献2

二级参考文献56

  • 1Boteler D H. Geomagnetic hazards to conducting networks[J] . Natural Hazards, 2003, 28(2-3): 537-561.
  • 2Marshall R A, Smith E A, Francis M J, et al. A preliminary risk assessment of the Australian region power network to space weather[J]. Space Weather, 2011, 9(10): 1-18.
  • 3Kappenman J G. Geomagnetic storm and their impacts on the U.S. Power Grid[R]. Goleta, California, US: Metatech Corporation, 2010.
  • 4Kappenman J G. Low-frequency protection concepts for the electric power grid: geomagnetically induced current (GIC) and E3 HEMP mitigation[R]. Goleta, California, US: MetatechCorporation, 2010.
  • 5NERC. 2012 Special Reliability Assessment Interim Report-Effects of Geomagnetic Disturbances on the Bulk Power System[R/OL]. North American Electric Reliability Corporation, 201212012-02-29]. http: //www.nerc. corn/ pa/RAPA/ra/Pages/de fault.aspx.
  • 6Hutchins T. GeomagneticaUy induced currents and their effect on power systems[D]. Chicago: University of Illinois, 2012.
  • 7Cooper C. Preparing the North American Power Grid for the perfect solar storm[R/OL]. Institute for Energy & the Environment Vermont Law School: Cooper C, 2011. http://68.112.84.103/Doeuments/Solar%20Storms_ White%20Paper_FINAL.pdf.
  • 8Pirjola R, Viljanen A. Complex image method for calculating electric and magnetic fields produced by an auroral electrojet of finite length[C]//Annales Geophysicae. Springer-Verlag, 1998, 16(11): 1434-1444.
  • 9Viljanen A, Pulkkinen A, Amm O, et al. Fast computation of the geoelectric field using the method of elementary current systems and planar Earth models[C]//Annales Geophysicae. 2004, 22(1): 101-113.
  • 10Pirjola R. Calculation of geomagnetically induced currents (GIC) in a high-voltage electric power transmission system and estimation of effects of overhead shield wires on GIC modeling[J]. Journal of atmospheric and solar-terrestrial physics, 2007, 69(12)- 1305-1311.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部