期刊文献+

基于FDM的机械故障信号诊断处理方法研究 被引量:3

Mechanical Fault Signal Diagnosis Method Based on Fourier Decomposition Method
下载PDF
导出
摘要 傅里叶分解(FDM)是一种新的自适应时频分析方法,该方法首先定义了瞬时频率具有物理意义的傅里叶固有频带函数(FIBFs),然后在整个傅里叶域自适应地搜寻解析傅里叶固有频带函数(AFIBFs),从而将非平稳非线性信号自适应地分解为若干个傅里叶固有频带函数和一个残余分量。FDM方法基于傅里叶变换,且是一种完备的、正交的、局部的和自适应的信号处理方法,数学理论充分,并且可以直接依据解析傅里叶固有频带函数直接求得时频能量谱,时频分辨率高,优点非常明显。仿真结果表明,与EMD相比,该方法无端点效应,不存在模态混叠效应,且数学理论充分。最后成功地将该方法应用到实际的滚动轴承故障诊断中。 Fourier Decomposition Method(FDM)is a new self adaptive Time-Frequency Analysis method. This method firstly defines the Fourier intrinsic band functions(FIBFs),which has physical significance of the instantaneous frequency,then adaptively search the analytic Fourier intrinsic band functions in the Fourier frequency domain. Thus,the non-stationary and nonlinear signal?is decomposed to a number of Fourier intrinsic band functions and a residual component. Because of the method based on Fourier transform,and is a kind of perfect,orthogonal and partial,adaptive signal processing method,mathematical theory fully,and the time-frequency energy spectrum is obtained directly by analytic FIBFs,the time-frequency resolution is high and the advantage is obvious. The simulation results show that compared with the EMD method,this method has some distinct advantages,such as no endpoint effect,no mode mixing and mathematical theory fully,etc.Finally,the proposed method has been applied in the rolling bearing fault diagnosis.
作者 梁明亮 苏东民 葛明涛 LIANG Ming-liang;SU Dong-min;GE Ming-tao(Zhengzhou Railway Vocational & Technical College,He’nan Zhengzhou 451460,China;He’nan University of Technology,He’nan Zhengzhou 450001,China;Zhengzhou University,He’nan Zhengzhou 451150,China)
出处 《机械设计与制造》 北大核心 2019年第1期103-106,共4页 Machinery Design & Manufacture
基金 河南省科技攻关项目(182102210141) 河南省高速铁路运营维护工程研究中心资助项目(2017) 郑州铁路职业技术学院科技创新团队资助项目(17KJCXTD02)
关键词 傅里叶分解 傅里叶固有频带函数 经验模态分解 滚动轴承 故障诊断 FDM FIBFs EMD Rolling Bearing Fault Diagnosis
  • 相关文献

参考文献1

二级参考文献8

  • 1COHEN L. Time-frequency distribution a review[J]. Proceedings of the IEEE,1989, 77(7): 941-981.
  • 2CLASSEN T, MECKLENBRAUKER W. The aliasing prob lem in discrete-time Wigner distribution[J]. IEEE Transac tions on Acoustics, Speech and Signal Processing, 1983, 31 (5): 1067- 1072.
  • 3MALLAT S. A theory for multi-resolution decomposition, the wavelet representation[J]. IEEE Trans P A M I, 1989, 11 (7) :674-689.
  • 4HUANG N E,SHEN Z,LONG S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non- stationary time series analysis[J]. Proceedings of the Royal Society A, 1998,454:903-995.
  • 5HUANG N E,SHEN Z, LONG S R. A new view of nonlinear water waves: the Hilbert speetrum[J]. Annu Rev Fluid Mech, 1999,31: 417-457.
  • 6JONATHAN S S. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Interface, 2005, 2(5): 443-454.
  • 7MARK G F, IVAN O. Intrinsic time-scale decomposition: time-frequency energy analysis and real-time filtering of non- stationary signals [J]. Proceedings of the Royal Society A, 2007, 463: 321-342.
  • 8QI Ke-yu, HE Zheng-iia, ZI Yan-yang. Cosine window-based boundary processing method for EMD and its application in rubbing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2007,21 (7):2750-2760.

共引文献23

同被引文献19

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部