期刊文献+

改进的噪声总体集合经验模式分解方法在轴承故障诊断中的应用 被引量:4

Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and its Application in Bearing Fault Diagnosis
下载PDF
导出
摘要 在复杂的流程工业中,机械设备往往处在高速、重载、高温、高辐射的环境中,轴承作为主要的机械零部件起着重要作用。由于轴承故障振动信号的微弱和不平稳的特性,造成故障特征向量提取和故障诊断存在着困难。提出一种改进的CEEMDAN(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)轴承故障诊断方法。通过对比分析仿真信号和实测信号可以得知:ICEEMDAN方法可以改善信号重构质量,具有良好的自适应性,能够提高故障信号的信噪比,从而可以有效地识别并提取有用的故障特征信息。 In the complex process of industry,the machinery equipment is often working in rigorous conditions such as highspeed,heavy load,high temperature and high radiation. Thus,the rolling bearing plays an important role in the maintaining mechanical components. To date,it is difficulty to extract the fault feature due to that the characteristics about the fault vibration signal is weak and unstable. The presents an improved CEEMDAN(ICEEMDAN)bearing fault diagnosis method.Researching by the simulation signal and the measured signal analysis,the proposed method can effectively improve the quality of reconstructed signals and have a good self-adaptability to enhance signal-to-noise of the fault signal. Therefore,it can identify and extract useful fault characteristic information effectively.
作者 阮荣刚 李友荣 易灿灿 肖涵 RUAN Rong-gang;LI You-rong;YI Can-can;XIAO Han(The Ministry of Education Key Laboratory of Metallurgical Equipment and Its Control,College of Machinery and Automation,Wuhan University of Science and Technology,Hubei Wuhan 430081,China)
出处 《机械设计与制造》 北大核心 2019年第1期153-157,共5页 Machinery Design & Manufacture
基金 国家自然科学基金资助(51405353 51475339) 湖北省杰出青年基金的资助(2016CFA042)
关键词 自适应噪声总体集合经验模式分解 本征模态函数 故障诊断 特征提取 Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN) Intrinsic Mode Function(IMF) Fault Diagnosis Feature Extraction
  • 相关文献

参考文献6

二级参考文献63

共引文献273

同被引文献76

引证文献4

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部