期刊文献+

熵产最小化在篦冷机风量优化中的应用研究 被引量:1

Study on the Application of Entropy Generation Minimization in Air Volume Optimization of Grate Cooler
下载PDF
导出
摘要 篦冷机冷却风量分配很大程度上决定着冷却机的热效率,而熵产分析可以评价换热过程的性质。通过建立篦冷机换热过程的熵产数学模型,量化了冷却风量与熵产的数值关系。并以最小化熵产数和风机功率为目标,使用多目标粒子群优化算法,迭代后得到了所求函数的最优Pareto前沿。通过最小距离法从最优解集中得到在5000t/d的水泥产量下最佳的风量分配方案。最后使用过程控制软件SIMATICPCS7绘制了篦冷机的操作画面,实现了篦冷机风量控制。在优化后的风量分配下,热工艺参数得到了改善,生产稳定。 To a large extent,the thermal efficiency of the grate cooler is determinedby cooling air distribution,and entropy generation analysis can evaluate the nature of the heat transfer process. By setting up the entropy production mathematical model for the heat transfer process of grate cooler,the numerical relationship between the cooling air flow and entropy generation was quantified. The multi-objective particle swarm optimization algorithm was used to obtain the optimal Pareto front aiming at minimizing entropy production and fan power. And the optimal air volume distribution is obtained from the optimal solution by the minimum distance method at the cement output of 5000t/d. At last,the operation screen of grate cooler is drawn by using the process control software SIMATIC PCS7,and the air volume controlis realized. Under the optimized air volume distribution,the thermal process parameters are improved and the production is stable.
作者 张和平 卫军 莫易敏 ZHANG He-ping;WEI Jun;MO Yi-min(College of Mechanical and Electrical Engineering,Wuhan University of Technology,Hubei Wuhan 430070,China)
出处 《机械设计与制造》 北大核心 2019年第1期215-218,共4页 Machinery Design & Manufacture
关键词 风量 熵产 粒子群算法 多目标 PCS7 Air Volume Entropy Production Particle Swarm Optimization Multi-Objective PCS7
  • 相关文献

参考文献3

二级参考文献27

  • 1尹洪超,朱元师,李德付.基于耦合气固传热篦冷机的数值模拟与研究[J].热科学与技术,2012,11(3):229-233. 被引量:12
  • 2郑夕健,张国忠,费烨.基于灰色模糊决策的多目标优化模型及应用研究[J].组合机床与自动化加工技术,2007(1):10-13. 被引量:7
  • 3Rodolfo Dufo-Lopez,Jose L.Bernal-Agustin.Multi-objective design of PV wind diesel hydrogen battery systems[J].Renewable Energy,2008,33:2559-2572.
  • 4S.Suresh,P.B.Sujit,A.K.Rao.Particle swarm optimization approach for multi-objective composite box-beam design[J].Composite Structures,2007,81:598-605.
  • 5kennedy J,Eberhttrt R C.Particle swarm optimization[C].Proceedings of IEEE International Conference on Neural Networks,Piscataway,NJ,1995:1942-1948.
  • 6Kennedy J.The particle swarm:social adaptation of knowledge[C].Proceedings of IEEE International Conference on Evolutionary Computation,Indianapolis,1997:303-308.
  • 7LOCHER G, KLEIN H. Mathematical models for the cement clinker burning process, Part 4: Grate cooler[J]. ZKG-international, 2002, 22(6): 46-57.
  • 8TOUIL D, BELABED H F, FRANCES C, et al. Heat exchange modeling of a grate clinker cooler and entropy production analysis[J]. International Journal of Heat and Technology, 2005, 23(1): 61-68.
  • 9MUJUMDAR K S, GANESH K V, KULKARNI S B, et al. Rotary cement kiln simulator (ROCKS): Integrated modeling of pre-heater, calciner, kiln and clinker cooler[J] Chemical Engineering Science, 2007, 62(9): 2590-2607.
  • 10YANG C, NAKAYAMA A, LIU W. Heat transfer performance assessment for forced convection in a tube partially filled with a porous medium[J]. International Journal of Thermal Sciences, 2012, 54: 98-108.

共引文献22

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部