期刊文献+

基于人工智能的教育质量评估系统研究 被引量:3

Research on Education Quality Assessment System Based on Artificial Intelligence
下载PDF
导出
摘要 科学客观的教育质量评估是当前教育行业的重要需求。人工智能赋能各行各业已成为未来社会发展的必然趋势。介绍了一种人工智能用于教育质量评估的方案。教育质量评估系统结合了大数据和人工智能技术,该系统利用各类人工智能算法对收集到的与教师教学质量有关的图像、声音、文字数据进行分析,并生成客观可视结果用于教育质量评估。 Scientific and objective evaluation of educational quality is an important demand of the current education industry. Artificial intelligence enabling all walks of life has become an inevitable trend of future social development. The scheme of artificial intelligence for education quality assessment is introduced. The education quality assessment system combines big data with artificial intelligence technology. It uses various artificial intelligence algorithms to analyze the collected image,sound and text data related to the teacher’s teaching quality,and it can generate objective visual results for educational quality assessment.
作者 吴浩然 袁涛 吴少平 李亚梦 Wu Haoran;Yuan Tao;Wu Shaoping;Li Yameng(China Unicom Network Technology Research Institute,Beijing 100048,China;China Information Technology Designing & Consulting Institute Co.,Ltd. Guangdong Branch,Guangzhou 510627,China;South ChinaNormal University,Guangzhou 510631,China)
出处 《邮电设计技术》 2018年第12期83-88,共6页 Designing Techniques of Posts and Telecommunications
关键词 人工智能 计算机视觉 教育质量评估 Artificial intelligence Computer vision Educational quality assessment
  • 相关文献

参考文献6

二级参考文献34

  • 1王永红.定量专利分析的样本选取与数据清洗[J].情报理论与实践,2007,30(1):93-96. 被引量:30
  • 2吴向军,姜云飞,凌应标.基于STRIPS的领域知识提取策略[J].软件学报,2007,18(3):490-504. 被引量:20
  • 3张建中.数字资源整合与个性化服务中关键技术研究[D].长沙:中南大学信息科学与工程学院,2008:43-45.
  • 4王曰芬,章成志,张蓓蓓,吴婷婷.数据清洗研究综述[J].现代图书情报技术,2007(12):50-56. 被引量:76
  • 5夏俊鸾,邵赛赛.Spark Streaming: 大规模流式数据处理的新贵. http://www.csdn.net/article/2014-01-28/2818282-Spark -Streaming-big-data. 2014.
  • 6Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Communications of the ACM, 2008, 3(51-1): 107-113.
  • 7耿益锋,陈冠诚.Impala:新一代开源大数据分析引擎. http://www.csdn.net/article/2013-12-04/2817707-ImpalaBig- Data-Engine. 2013.12.
  • 8Strom. http://storm.incubator.apache.org/. 2014.
  • 9Zaharia M, Chowdhury M, Das T, et al. Resilient distributed datasets: A fault-tolerant abstration for in-memory cluster computing. Proc. of the 9th USENIX Conference on NetWorked System Design and Implementation. 2012. 2-16.
  • 10Gonzalez J, Low Y, Gu H. PowerGraph: Distributed garph-p arallel computation on natural graphs. Proc. of the 10th USENIX Symposium on Operating Systems Design and Implementatin. 2012. 17-30.

共引文献227

同被引文献39

引证文献3

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部