期刊文献+

利用线性模型的置换检验实现Meta分析:基于SAS宏的实现

Meta-Analysis Using The Permutation Test of The Linear Model:Implementation Based on The SAS Macro
下载PDF
导出
摘要 目的介绍利用线性模型的置换检验实现小样本研究的Meta分析方法。方法通过Fleiss93cont实例介绍美国南佛罗里达大学Kromrey等共同研发的一款基于线性模型的置换检验实现协变量分析的SAS宏命令(%METAPERM2)。该数据集中的小样本研究并不能满足正态性、独立性、方差齐性等前提假设。结果采用广义线性模型的回归系数为:X_1(年龄)=0.125,X_2(地区)=0.291。五种回归权重检验方法的结果为:传统加权最小二乘法β_1=0.000,β_2=0.338;Freedman Lane模型β_1=0.228,β_2=0.180;Kennedy模型β_1=0.472,β_2=0.557;Manly模型β_1=0.064,β_2=0.040;Ter Braak模型β_1=0.075,β_2=0.142。结论在正态性、独立性、方差齐性理论假设条件下,传统最小二乘法系数检验的显著性比任何置换检验都要大;小样本研究的Meta分析采用置换检验可能是一种更为合适的统计学方法。 Objective To introduce a meta-analysis method based on permutation test of linear models for small-sample meta-analysis.Methods A Fleiss93cont example was used to introduce a SAS macro(%METAPERM2)for covariate analysis developed by Kromrey of the Southern University of Florida in USA.This small-sample dataset did not satisfy the assumptions such as normality,independence and homogeneity of variance.Results The regression coefficient of generalized linear model was X1(age)=0.125,X2(area)=0.291.The results of the five regression weight test methods were:The traditional weighted least squares(WLS)β1=0.000,β2=0.338,Freedman Lane modelβ1=0.228,β2=0.180,Kennedy modelβ1=0.472,β2=0.557,Manly modelβ1=0.064,β2=0.040,Ter Braak modelβ1=0.075,β2=0.142.Conclusions Based on the hypothesis of normality,independence and homogeneity of variance,the significance of the traditional WLS coefficient test was larger than that of any permutation test,and permutation test may be a more suitable statistical method for small-sample meta-analysis.
作者 郑建清 黄碧芬 肖丽华 苏菁菁 吴敏 ZHENG Jian-qing;HUANG Bi-fen;XIAO Li-hua;SU Jing-jing;WU Min(The Second Affiliated Hospital of Fujian Medical University,Fujian Quanzhou 362000,China;Affiliated People..s Hospital of Quanzhou Medical College,Fujian Quanzhou 362000,China)
出处 《循证医学》 CSCD 2018年第6期365-369,共5页 The Journal of Evidence-Based Medicine
基金 福建医科大学附属第二医院苗圃基金资助项目(2017MP04)
关键词 置换检验 线性模型 META分析 SAS软件 宏命令 permutation test linear model meta-analysis SAS macro
  • 相关文献

参考文献1

二级参考文献17

  • 1Anderson, M. J., Robinson, J.(2001). Permutation tests for linear models. Australian Journal of Statistics ,75-88.
  • 2Anderson, M. J. , Legendre, P.(1999). An empirical comparison of permutation methods for test of partial regressions coefficients in a linear model. Journal of Statistical Computation and Simulation, ,271-303.
  • 3Brown, B. M., Maritz, J. S.(1982). Distribution- free methods in regression. Australian Journal of Statistics,,318-333.
  • 4Collins, M. F.(1987). A permutation test for planar regression. Australian Journal of Statistics,,303-308.
  • 5Freedman, D., Lane, D.(1983). A nonstochastic interpretation of reported significance levels. Journal of Business and Economic Statistics,,292-298.
  • 6Gail, M. H., Tan, W.Y., Piantadosi,S.(1988). Tests for no treatment effect in randomized clinical trials. Biometrika, ,57-64.
  • 7Good, P. (1994). Permutation tests: A practical guide toresampling methods for testing hypotheses. Springer-Verlag, New York.
  • 8Hogarty, K. Y., Kromrey, J. D.(2003). Permutation tests for linear models in recta-analysis: Robusmess and power under non-normality and variance heterogeneity. Paper presented at the annual meeting of the American Educational Research Association, Chicago (2003, April).
  • 9Kempthome, O., Dorfler, T.E.(1969). The behavior of some significance tests under experimental randomization.Biometrika, , 231-248.
  • 10Kennedy, P.E.(1995). Randomization tests in econometrics. Journal of Business and Economic Statistics,, 85-94.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部