期刊文献+

基于改进人工蜂群优化与组合特征提取的手部运动意图识别 被引量:1

Hand movement intention recognition based on improved artificial bee colong optimization and combined feature extraction
下载PDF
导出
摘要 为了解决表面肌电信号混迭导致的手部运动意图识别率较低的问题,提出了一种基于改进的人工蜂群优化盲源有序分离算法。本算法以表面肌电信号的规范四阶累积量作为代价函数,使用改进的人工蜂群优化算法代替传统的梯度算法对代价函数进行优化,并以代价函数绝对值的降序逐次提取出源信号;对于肌电信号的非平稳性及易受干扰的问题,采用一种基于小波包变换和样本熵的特征提取方法,并与表征肌电信号细节和强度的特征峰度、偏度、肌电积分值组合构建特征向量,训练二叉树支持向量机分类器。实验结果表明,采用表面肌电信号的盲源分离预处理与组合特征提取的方法识别六种手部运动意图,平均准确率达到93. 33%。 A sequential blind source signal separation algorithm based on Improved Artificial Bee Colony Optimization(IABO)algorithm was proposed to solve the problem of low recognition accuracy of hand movement intention,which caused by aliasing of surface electromyography(sEMG)signal.Normalized fourth-order cumulant of the sEMG signal was used as cost function in the algorithm,and traditional gradient algorithm was replaced by IABO for optimizing the cost function.Therefore,the source signal could be extracted on the descending order of normalized fourth-order cumulant;Considering the characteristics of non-stationary and easily disturbed of sEMG signal,we proposed a combined feature extraction method,which contained sample entropy from the subspace of wavelet packet decomposition and kurtosis、skewness、the integral values of sEMG signal.At last,binary tree support vector machine classifier with combined features was trained.The experimental results show that,six kinds of hand movements intention can be effectively predicted by using the blind source separation and combined feature,the average accuracy rate reaches to 93.33%.
作者 石军梅 王从庆 左超 SHI Junmei;WANG Congqing;ZUO Chao(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《生物医学工程研究》 2018年第4期481-486,共6页 Journal Of Biomedical Engineering Research
基金 江苏省重点研发计划(BE2016757)
关键词 改进人工蜂群优化 四阶累积量 有序盲源分离 组合特征提取 手部运动意图识别 Improved artificial bee colony optimization Normalized fourth-order cumulant Sequential blind separation Combined feature Hand movement intention recognition
  • 相关文献

参考文献9

二级参考文献138

  • 1熊安斌,赵新刚,韩建达,刘光军.基于混沌理论的面瘫患者表面肌电信号分析[J].科学通报,2013,58(S2):152-165. 被引量:7
  • 2刘加海,王丽,王健.基于相空间、熵和复杂度变化的表面肌电信号分析[J].浙江大学学报(理学版),2006,33(2):182-186. 被引量:19
  • 3钟家强,王润生.基于独立成分分析的多时相遥感图像变化检测[J].电子与信息学报,2006,28(6):994-998. 被引量:30
  • 4傅予力,沈轶,谢胜利.基于规范高阶累积量的盲分离算法[J].应用数学,2006,19(4):869-876. 被引量:8
  • 5Cichocki A,Thawonmas R,Amari S. Sequential blind signal extraction in order specified by stochastic proper- ties [J]. Electronics Letters, 1997,33 (1) : 64-65.
  • 6Kennedy J, Eberhart R C. Particle swarm optimiza- tion [C]// Proceedings of IEEE International Conference on Neural Networks. Perth,Australia, 1995 : 1942-1948.
  • 7Shi Y H,Eberhart R C. A modified particle swarm opti- mizer[C]// IEEE World Congress on Computational In- telligence. Anchorage,Alaska, 1998 -69-73.
  • 8Park Hyung-Min,Oh Sang-Hoon,Lee Soo-Young. A modified infomax algorithm for blind signal separa-tion[J]. Neurocomputing,2006,70 (1/2/3) :229-240.
  • 9Guo Liangfeng,Garland M. The use of entropy minimi- zation for the solution of blind source separation prob- lems in image analysis[J]. Pattern Recognition,2006, 6 (39) : 1066-1073.
  • 10Tichavsky P,Koldovsky Z,Yeredor A,et al. A hybrid technique for blind separation of non-gaussian and time- correlated sources using a multicomponent approach[J]. IEEE Trans on Neural Networks ,2008,19 (3) :421-430.

共引文献132

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部