期刊文献+

石墨炔及其聚集态结构与性能研究进展 被引量:1

Progress on the Structures and Properties of Graphyne and Its Aggregation States
下载PDF
导出
摘要 石墨炔是由sp和sp2杂化形成的具有一种新型二维网络结构的碳的同素异形体,具有丰富的碳化学键、大的共轭体系、宽面间距、优良的化学稳定性。由于其具有特殊的电子结构及类似硅的优异的半导体性能,石墨炔有望广泛应用于电子、半导体与光电器件、催化以及新能源领域。本文总结了石墨炔的结构、超分子类石墨炔结构、石墨炔的多层超分子聚集体结构、类石墨炔碳纳米网络结构及其设计策略、石墨炔的力学性能等研究进展,对其在2D负泊松比材料分子设计研究方面进行了展望。 Graphyne is a two-dimensional(2D)network structure of carbon allotropes formed by sp and sp^2 hybrid states,with rich carbon chemical bonds,large conjugate system,wide surface spacing and excellent chemical stability.Because of its special electronic structure and excellent semiconductor properties like silicon,graphyne is expected to be widely applied in electronics,semiconductor and optoelectronic devices,catalysis and new energy fields.This paper summarizes the research progresses on the structures of graphyne,supramolecular structure of graphyne-like system,multilayer supramolecular aggregated structures of graphyne and network structure,design strategy of graphyne-like nano-carbon and mechanical properties of graphyne,especially the molecular design of the graphyne-like 2D nano-carbon with negative Poisson′s ratio is prospected.
作者 刘艳芝 袁焜 朱元成 LIU Yanzhi;YUAN Kun;ZHU Yuancheng(College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001;KeyLaboratory for New Molecular Materials Design and Function of Gansu Universities, Tianshui 741001)
出处 《材料导报》 EI CAS CSCD 北大核心 2018年第A02期107-110,133,共5页 Materials Reports
基金 国家自然科学基金(21663024) 陇原青年创新创业个人项目 甘肃省高等学校科研项目(2018A-076)
关键词 石墨炔 聚集体 结构与性能 力学性能 graphyne aggregate state structure and property mechanical property
  • 相关文献

参考文献2

二级参考文献42

  • 1Stankovich, S.; Dikin, A. D.; Dommett, H. B. G.; Kohlhaas, M. K.; Zimney, J. E.; Stach, A. E.; Piner, D. R.; Nguyen, T. S.; Ruoff, S. R. Graphene-based composite materials. Nature 2006, 442, 282-286.
  • 2Bitounis, D.; Ali-Boucetta, H.; Hong, B. H.; Min, D:H.; Kostarelos, K. Prospects and challenges of graphene in biomedical applications. Adv. Mater. 2013, 25, 2258-2268.
  • 3Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611-622.
  • 4Avouris, P.; Marcus, F.; Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nat. Photonics 2008, 2, 341-350.
  • 5Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 2006, 313, 951-954.
  • 6Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191-1196.
  • 7Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314.
  • 8Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z.; McGovern, I. T.; et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131,3611-3620.
  • 9Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K.; Coleman, J. N.; et ah High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563-568.
  • 10Le6n, V.; Quintana, M.; Herrero, M. A.; Fierro, J. L. G.; de la Hoz, A.; Prato, M.; V-tzquez, E. Few-layer graphenes from ball-milling of graphite with melamine. Chem. Commun. 2011, 47, 10936--10938.

共引文献5

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部