期刊文献+

基于多输出最小二乘支持向量回归建模的自适应非线性预测控制及应用 被引量:14

Multi-output least squares support vector regression modeling based adaptive nonlinear predictive control and its application
下载PDF
导出
摘要 提出一种可有效提高常规预测控制方法控制性能与计算效率的数据驱动自适应非线性模型预测控制方法.首先,为了提高多输出非线性系统最小二乘支持向量回归(least squares support vector regression, LS–SVR)建模的精度,考虑各维输出间的耦合关系,采用在目标函数中加入样本整体拟合误差项,实现多输出LS–SVR(multi-output LS–SVR,M–LS–SVR)预测建模,同时采用粒子群算法优化模型参数;其次,针对动态过程建模的模型失配问题以及由于M–LS–SVR模型复杂导致传统智能算法求解预测控制律缓慢的问题,提出自适应非线性模型预测控制策略,包括两个非线性优化层:第1层采用梯度下降算法实时优化模型和实际过程输出的偏差,以自适应调节模型参数;第2层采用具有全局收敛性和超线性收敛速度序列二次规划(sequential quadratic programming, SQP)算法设计非线性预测控制器,以加速预测控制律的求解速度. Benchmark仿真实例及在高炉炼铁过程的数据试验表明:所提基于M–LS–SVR预测建模的自适应非线性模型预测控制具有较快的求解速度、较好的设定值跟踪和干扰抑制性能以及较强的鲁棒性. This paper proposes a novel data-driven adaptive nonlinear predictive control method,which can effectively improve the control performance and computing efficiency of the conventional predictive control methods.First,in order to improve the accuracy of least squares support vector regression(LS–SVR)modeling for multi-output nonlinear systems,and considering the coupling relationship among multiple outputs,multi-output LS–SVR(M–LS–SVR)prediction modeling is proposed in this paper by adding the whole sample fitting error term to the optimization objective function.And the particle swarm optimization(PSO)algorithm is used to optimize the model parameters.Then,in view of the model mismatch of dynamic process modeling,and considering that the complexity of the M–LS–SVR model may lead to the slow optimization speed of predictive control with traditional intelligent algorithms,a novel adaptive nonlinear predictive control scheme is proposed,which includes two phases of nonlinear optimization.The first phase is to adopt the gradient descent algorithm to optimize the error between the model outputs and the actual ones in real time,so as to adjust the model parameters.And the second one is to use sequential quadratic programming(SQP)algorithm with global convergence and superlinear convergence speed to design the nonlinear predictive controller,so as to accelerate the speed of predictive control solving.Benchmark simulation and data experiment in a blast furnace ironmaking process show that the proposed method has fast computing speed,and good performances of setpoint tracking,disturbance rejection and robustness.
作者 戴鹏 周平 梁延灼 柴天佑 DAI Peng;ZHOU Ping;LIANG Yan-zhuo;CHAI Tian-you(State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang Liaoning 110819,China;State Key Laboratory of Process Automation in Mining&Metallurgy,Beijing 102628,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2019年第1期43-52,共10页 Control Theory & Applications
基金 国家自然科学基金项目(61473064 61333007 61290323 61790572) 中央高校基本科研业务费项目(N160805001 N160801001) 辽宁省教育厅科技项目(L20150186) 矿冶过程自动控制技术国家(北京市)重点实验室开放课题(BGRIMM–KZSKL–2017–04)资助~~
关键词 多输入多输出非线性系统 多输出最小二乘支持向量回归机 自适应非线性预测控制 序列二次规划算法 multi-input multi-output nonlinear system multi-output least squares support vector regression(M–LS–SVR) adaptive nonlinear predictive control sequential quadratic programming(SQP)
  • 相关文献

参考文献2

二级参考文献36

  • 1陈云霞,段朝阳.飞控系统最坏情况分析方法研究[J].航空学报,2005,26(5):647-651. 被引量:7
  • 2朱亮,姜长生,陈海通,方炜.基于单隐层神经网络的空天飞行器直接自适应轨迹线性化控制[J].宇航学报,2006,27(3):338-344. 被引量:26
  • 3S. Qin, A. T. Badgwell. A survey of industrial model predictive control technology. Control Engineering Practice, 2003, 11(7): 733 - 764.
  • 4M. A. Henson. Nonlinear model predictive control: current status anc future directions. Computers & Chemical Engineering, 1998, 23(2) 187 - 202.
  • 5J. A. Rossiter. Model Based Predictive Control: A Practical Approach. New York: CRC press, 2003.
  • 6Y. Liu, Y. Gao, Z. Gao, et al. Simple nonlinear predictive control strategy for chemical processes using sparse kernel learning with polynomial form. Industrial & Engineering Chemistry Research, 2010, 49(17): 8209 - 8218.
  • 7N. Bhat, T. J. Mcavoy. Use of neural nets for dynamic modeling and control of chemical process systems. Computers and Chemical Engineering, 1990, 14(5): 573 - 583.
  • 8D. C. Psichogios, L. H. Ungar. Direct and indirect model based control using artificial neural network. Industrial & Engineering Chemistry Research, 1991, 30(12): 2564 - 2573.
  • 9K. J. Hunt, K. Sbarbaro, R. Zbikowski, et al. Neural network for control systems - a survey. Automatica, 1992, 28(6): 1083 - 1120.
  • 10J. S. Taylor, N. Cristianini. Kernel Methods for Pattern Analysis Cambridge: Cambridge University Press, 2004.

共引文献21

同被引文献173

引证文献14

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部