期刊文献+

一种多机器人分布式编队策略与实现 被引量:3

A Multi-robot Distributed Formation Strategy and Implementation
下载PDF
导出
摘要 多机器人编队问题已经成为当前研究的热点,在执行一些如地震救援、军事搜索等复杂任务时,多个机器人通过保持一定的队形可以提高复杂任务的执行效率。为了让机器人依据要完成的目标快速形成目标队形,选择合适的编队控制策略十分重要。对此,提出了一种新的基于微粒群模型的多机器人编队算法。该算法利用分布式计算的方式控制多机器人编队,通过构造包含所有机器人位置信息的队形适应值函数,将函数取最优解时的变量作为目标队形的位置,采用微粒群算法优化适应值函数,将优化过程中的最优解作为机器人的最优位置,使机器人朝着最优解运动,成功实现了四种目标队形(线形、三角形、圆形和六边形)的编队控制和队形变换,仿真结果证明了该算法的有效性。 The issue of multi-robot formation has become a hot spot in current research.When performing complex tasks such as earthquake rescue and military search,multiple robots can improve the execution efficiency of complex tasks by maintaining a certain formation.In order to quickly form a target formation based on the objectives to be achieved for robots,it is important to select the appropriate formation control strategy.For this,we propose a new multi-robot formation algorithm based on particle swarm optimization.This algorithm uses distributed computing to control the formation of multiple robots.By constructing a shape-adaptive value function that contains all robot position information,the function is optimally solved.The time variable is used as the position of the target formation.The particle swarm optimization algorithm is used to optimize the fitness function.The optimal solution in the optimization process is used as the optimal position of the robot.The robot moves toward the optimal solution and successfully achieves four target formations(linear,triangular,circular and hexagonal)formation control and formation transformation.The effectiveness of the algorithm is proved by simulation results.
作者 户晓玲 王健安 HU Xiao-ling;WANG Jian-an(Huake College of Taiyuan University of Science and Technology,Taiyuan 030024,China)
出处 《计算机技术与发展》 2019年第1期21-25,共5页 Computer Technology and Development
基金 山西省青年科技研究基金(201701D221107)
关键词 微粒群算法 分布式计算 机器人编队 队形变换 particle swarm optimization distributed computation robots formation formation change
  • 相关文献

参考文献6

二级参考文献50

共引文献79

同被引文献36

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部