期刊文献+

利用网络图像增强行为识别

Improvement of Action Recognition Using Web Images
下载PDF
导出
摘要 鉴于商业视觉搜索引擎的日益成熟,网络数据可能是下一个扩大视觉识别的重要数据源。通过观察发现,动作名称查询到的网络图像具有歧视性的动作场景。网络图像的歧视性信息和视频的时间信息之间有相互补充的优势。在此基础上提出一种利用大量的网络图像来增强行为识别的方法。具体框架是:提取行为视频的密集轨迹特征,并与网络图像特征相结合后放入支持向量机中训练分类。该方法是一个跨域学习问题,为了有效地利用网络图像特征,引入了跨域字典学习算法来处理网络图像,以解决网络图像域和视频域之间存在的域差异问题。由于网络图像可以轻松地在网络上获取,所以该方法几乎零成本地增强行为识别。在KTH和YouTube数据集上的实验结果表明,该方法有效提高了人体行为识别的准确率。 In view of the growing maturity of commercial visual search engines,Web data may be the next important data source to expand visual recognition.It is observed that the Web images queried by the action name is discriminatory to the action scene.Clearly,there are complementary benefits between the temporal information available in videos and the discriminatory scenes portrayed in images.On the basis,we propose an algorithm which can enhance action recognition by using a large number of Web images.We extract the dense trajectory feature of behavior video and put it into support vector machine for training classification in combination with Web image feature.This algorithm is a cross-domain learning problem.In order to effectively use Web image features,we introduce a cross-domain dictionary learning algorithm to deal with Web images for solving the domain differences between Web image domain and video domain.Because the Web images can be easily obtained on the network,it can enhance action recognition with at almost zero cost.Experiment shows that the proposed algorithm can improve the accuracy of human action recognition effectively on KTH and YouTube datasets.
作者 闻号 WEN Hao(School of Electronics and Information Engineering,Anhui University,Hefei 230601,China)
出处 《计算机技术与发展》 2019年第1期31-34,共4页 Computer Technology and Development
基金 安徽省自然科学基金(1508085MF120)
关键词 网络学习 迁移学习 行为识别 密集轨迹 字典学习 Web learning transfer learning action recognition dense trajectory dictionary learning
  • 相关文献

参考文献3

二级参考文献56

  • 1Laptev I,Lindeberg T.On space-time interest points [J].International Journal of Computer Vision,2005,64(2/3):107-123.
  • 2Ahad M A R.Motion history image [M]//Motion History Images for Action Recognition and Understanding.London:Springer,2013:31-76.
  • 3Wang H,Klaser A,Schmid C,et al.Action recognition by dense trajectories[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D C:IEEE Computer Society Press,2011:3169-3176.
  • 4Chaudhry R,Ravichandran A,Hager G,et al.Histograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of human actions [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D C:IEEE Computer Society Press,2009:1932-1939.
  • 5Fehr J,Burkhardt H.3D rotation invariant local binary patterns [C]//Proceedings of the 19th International Conference on Pattern Recognition.Washington D C:IEEE Computer Society Press,2008:1-4.
  • 6Scovanner P,Ali S,Shah M.A 3-dimensional SIFT descriptor and its application to action recognition [C]//Proceedings of the 15th International Conference on Multimedia.New York:ACM Press,2007:357-360.
  • 7Junejo I N,Aghbari Z A.Using SAX representation for human action recognition [J].Journal of Visual Communication and Image Representation,2012,23(6):853-861.
  • 8Blei D M,Ng A Y,Jordan M I.Latent Dirichlet allocation [J].Journal of Machine Learning Research,2003,3(4/5):993-1022.
  • 9Blei D M,McAuliffe J D.Supervised topic models [C]//Proceedings of the 21st Annual Conference on Neural Information Processing Systems.Cambridge:MIT Press,2007:121-128.
  • 10Dollar P,Rabaud V,Cottrell G,et al.Behavior recognition via sparse spatio temporal features [C]//Proceedings of the 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.Washington D C:IEEE Computer Society Press,2005:65-72.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部