期刊文献+

基于块模型的混合高斯运动目标检测方法 被引量:3

A Gaussian Mixture Moving Object Detection Method Based on Block Model
下载PDF
导出
摘要 对场景中运动目标进行实时检测,在公共安全、军事和航空航天等领域中具有非常重要的应用价值。在图像处理运动检测中,传统的混合高斯模型方法为每一个像素构建高斯模型,利用背景像素在较长时间内具有稳定的概率分布密度等统计信息分离背景区域,实现背景和运动目标的分离。该方法在实际使用中容易受到噪声干扰,且计算成本高。针对其不可避免的缺点,提出了一种基于信息度对图像进行分块的混合高斯模型算法。通过图像块中含有运动点的比例不同采用不同的混合高斯模型,对位于运动目标边缘的图像块采用单独的算法进行预处理,不仅能够降低背景区域、运动区域中噪声对背景模型的影响,同时能够以更高的计算效率实现运动目标的检测。实验结果表明,该算法在实际场景中具有良好的可行性和鲁棒性。 Real-time detection of moving targets in the scene is of great application value in the fields of public security,military and aerospace.In the motion detection of image processing,the traditional mixed Gaussian model constructs a Gaussian model for each pixel,and uses the background pixel with stable probability distribution density and other statistical information for a long period to separate the background region,so as to achieve the separation of background and moving targets.This method is subject to be interfered by noise in practical use and has high calculation cost.For this,we propose a mixed Gaussian model algorithm for image segmentation based on information degree.Different mixed Gaussian model are adopted according to different proportions of moving points in the image blocks,and the image blocks located at the edge of moving target are preprocessed by a separate algorithm.It can not only reduce the influence of noise in the background area and moving area on the background model,but also realize the detection of moving targets with higher computational efficiency.The experiment shows that the proposed algorithm is feasible and robust in practical scenario.
作者 赵泽壹 路纲 ZHAO Ze-yi;LU Gang(Key Laboratory of Modern Teaching Technology of Ministry of Education,Shaanxi Normal University,Xi’an 710119,China;School of Computer Science,Shaanxi Normal University,Xi’an 710119,China)
出处 《计算机技术与发展》 2019年第1期97-101,共5页 Computer Technology and Development
基金 陕西省自然科学基础研究计划项目(2017JM6103) 陕西师范大学2017年度校级综合教改研究项目(17JG33)
关键词 运动物体检测 帧差法 高斯混合模型 分块模型 信息度 moving object detection frame subtraction method Gaussian mixture model blocking model information degree
  • 相关文献

参考文献6

二级参考文献62

  • 1袁基炜,史忠科.一种快速运动目标的背景提取算法[J].计算机应用研究,2004,21(8):128-129. 被引量:15
  • 2杨淑莹,王厚雪,章慎锋,何丕廉.序列图像中运动目标聚类识别技术研究[J].天津师范大学学报(自然科学版),2005,25(3):51-53. 被引量:3
  • 3魏志强,纪筱鹏,冯业伟.基于自适应背景图像更新的运动目标检测方法[J].电子学报,2005,33(12):2261-2264. 被引量:54
  • 4肖梅,韩崇昭,张雷.基于时空背景差的运动目标检测算法[J].计算机辅助设计与图形学学报,2006,18(7):1044-1048. 被引量:17
  • 5Friedman N, Russell S. Image segmentation in video sequences: a probabilistic approach. In: Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence. Providence, USA: Morgan Kaufmann, 1997. 175-181
  • 6Stauffer C, Grimson W E L. Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern AnaJysis and Machine Intelligence, 2000, 22(8): 747-757
  • 7Kaewtrakulpong P, Bowden R. An improved adaptive back- ground mixture model for real-time tracking with shadow detection. In: Proceedings of the 2nd European Workshop on Advanced Video Based Surveillance Systems. Providence, USA: Kluwer Academic Publishers, 2001. 1-5
  • 8Zivkovic Z, van der Heijden F. Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters, 2006, 27(7): 773-780
  • 9Lee D S. Effective Gaussian mixture learning for video background subtraction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 827-832
  • 10Power P W, Schoonees J A. Understanding background mixture models for foreground segmentation. In: Proceedings of Image and Vision Computing New Zealand. Auckland, New Zealand: Auckland University Press, 2002. 267-271

共引文献141

同被引文献39

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部