期刊文献+

基于粒子群优化和支持向量机的花粉浓度预测模型 被引量:20

Forecasting model of pollen concentration based on particle swarm optimization and support vector machine
下载PDF
导出
摘要 为了提高花粉浓度预报的准确率,解决现有花粉浓度预报准确率不高的问题,提出了一种基于粒子群优化(PSO)算法和支持向量机(SVM)的花粉浓度预报模型。首先,综合考虑气温、气温日较差、相对湿度、降水量、风力、日照时数等多种气象要素,选择与花粉浓度相关性较强的气象要素构成特征向量;其次,利用特征向量与花粉浓度数据建立SVM预测模型,并使用PSO算法找出最优参数;然后利用最优参数优化花粉浓度预测模型;最后,使用优化后的模型对花粉未来24 h浓度进行预测,并与未优化的SVM、多元线性回归法(MLR)、反向神经网络(BPNN)作对比。此外使用优化后的模型对某市南郊观象台和密云两个站点进行逐日花粉浓度预测。实验结果表明,相比其他预报方法,所提方法能有效提高花粉浓度未来24 h预测精度,并具有较高的泛化能力。 To improve the accuracy of pollen concentration forecast and resolve low accuracy of current pollen concentration forecast model,a model for daily pollen concentration forecasting based on Particle Swarm Optimization(PSO)algorithm and Support Vector Machine(SVM)was proposed.Firstly,the feature vector extraction was carried out by using correlation analysis technique to select meteorological data with strong correlation with pollen concentration,such as temperature,daily temperature difference,relative humidity,precipitation,wind,sunshine hours.Secondly,an SVM prediction model based on this vector and pollen concentration observation data was established.The PSO algorithm was designed to optimize the parameters in SVM algorithm,and then the optimal parameters were used to construct daily pollen concentration prediction model.Finally,the forecast of pollen concentration in 24 hours in advance was made by using the optimized SVM model.The comparison among the accuracy of the optimized SVM model,Multiple Linear Regression(MLR)model and Back Propagation Neural Network(BPNN)model was performed to evaluate their performances.In addition,the optimized model was also applied for the forecast of pollen concentration in 24 hours in advance at Nanjiao and Miyun meteorological observation stations.The experimental results show that the proposed method performs better than MLR and BPNN methods.Meanwhile,it also provides promising results for forecast of pollen concentration in 24 hours in advance and also has good generalization ability.
作者 赵文芳 王京丽 尚敏 刘亚楠 ZHAO Wenfang;WANG Jingli;SHANG Min;LIU Yanan(Institute of Urban Meteorology,China Meteorological Administration,Beijing 100089,China;Beijing Meteorological Information Center,Beijing 100089,China;College of Geography and Land Engineering,Yuxi Normal University,Yuxi Yunnan 653100,China)
出处 《计算机应用》 CSCD 北大核心 2019年第1期98-104,共7页 journal of Computer Applications
基金 国家自然科学基金资助项目(41575156) 中国气象局2019年度气象软科学研究重点项目(19)~~
关键词 花粉浓度 支持向量机 粒子群优化算法 SPARK 花粉浓度预测 pollen concentration Support Vector Machine(SVM) Particle Swarm Optimization(PSO)algorithm Spark pollen concentration forecast
  • 相关文献

参考文献15

二级参考文献161

共引文献148

同被引文献222

引证文献20

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部