摘要
细胞行为的宏观变化常常是由微观阈值事件触发的.由于细胞内部过程的随机性,因此阈值触发的细胞事件也是随机的.数学上,跨越阈值事件可以归结为首达时间问题.该文以通俗易懂的方式建立起细胞过程中首达时间的一般数学框架,特别是给出了计算首达时间分布和平均首达时间的一般公式,这些公式具有广泛的应用,并用简单的生灭过程例子来说明如何使用该文的理论和公式.
Macroscopic changes in cellular behavior are triggered often by microscopic threshold events. These events are usually stochastic due to stochasticity of intracellular processes. Mathematically,threshold-crossing events can be formulated as first passage time( FPT) issues. Here,a general mathematical framework for FPTs of cellular processes is established in a simple manner,and in particular,general formulae for calculating FPT distributions and their statistical indices are derived. These formulae can have broad applications. The exemplar of a simple birthdeath process is used to show how the theory and formulae are used.
作者
周天寿
ZHOU Tianshou(School of Mathematics,Sun Yat-sen University,Guangzhou Guangdong 510275,China)
出处
《江西师范大学学报(自然科学版)》
CAS
北大核心
2019年第1期1-6,共6页
Journal of Jiangxi Normal University(Natural Science Edition)
基金
国家自然科学基金委/重大研究计划/集成(91530320)
面上(11775314)资助项目
关键词
首次穿越时间
主方程
概率分布
统计量
生灭过程
first passage time
master equation
probability distribution
statistical quantity
birth-death process