摘要
对5次非线性Schrdinger方程提出了一个线性化4层紧致有限差分格式,引入"抬升"技巧,运用标准的能量方法和数学归纳法建立了误差的最优估计,证明数值解在空间和时间2个方向分别具有4阶和2阶精度.数值实验对理论结果进行了验证,并通过对比表明该文格式在保持精度相当的前提下较已有格式具有更高的计算效率.
In this paper,a linearized four-level compact finite difference scheme for the nonlinear Schrodinger equation involving quintic term is proposed.By introducing a "lifting" technique,the optimal error estimate is established by using standard energy method and mathematical induction.It is proved that the numerical solution has fourth-order and second-order accuracy in space and in time,respectively.Numerical experiments are given to verify the theoretical results and compared with the existing results.The results show that the proposed scheme has higher computational efficiency under the condition of maintaining the accuracy.
作者
翟步祥
聂涛
薛翔
ZHAI Buxiang;NIE Tao;XUE Xiang(Basic Department,Nanjing Polytechnic Institute,Nanjing Jiangsu 210048,China;School of Mathematics and Statistics,Nanjing University of Information Science and Technology,Nanjing Jiangsu 210044,China)
出处
《江西师范大学学报(自然科学版)》
CAS
北大核心
2019年第1期35-38,51,共5页
Journal of Jiangxi Normal University(Natural Science Edition)
基金
国家自然科学基金(11571181)
江苏省自然科学基金(BK20171454)资助项目