期刊文献+

5次非线性Schrdinger方程的一个线性化4层紧致差分格式 被引量:2

The Linearized Four-Level Compact Finite Difference Scheme for the Quintic Nonlinear Schrdinger Equation
下载PDF
导出
摘要 对5次非线性Schrdinger方程提出了一个线性化4层紧致有限差分格式,引入"抬升"技巧,运用标准的能量方法和数学归纳法建立了误差的最优估计,证明数值解在空间和时间2个方向分别具有4阶和2阶精度.数值实验对理论结果进行了验证,并通过对比表明该文格式在保持精度相当的前提下较已有格式具有更高的计算效率. In this paper,a linearized four-level compact finite difference scheme for the nonlinear Schrodinger equation involving quintic term is proposed.By introducing a "lifting" technique,the optimal error estimate is established by using standard energy method and mathematical induction.It is proved that the numerical solution has fourth-order and second-order accuracy in space and in time,respectively.Numerical experiments are given to verify the theoretical results and compared with the existing results.The results show that the proposed scheme has higher computational efficiency under the condition of maintaining the accuracy.
作者 翟步祥 聂涛 薛翔 ZHAI Buxiang;NIE Tao;XUE Xiang(Basic Department,Nanjing Polytechnic Institute,Nanjing Jiangsu 210048,China;School of Mathematics and Statistics,Nanjing University of Information Science and Technology,Nanjing Jiangsu 210044,China)
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2019年第1期35-38,51,共5页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(11571181) 江苏省自然科学基金(BK20171454)资助项目
关键词 5次非线性Schrodinger方程 紧致有限差分格式 最优误差估计 线性化4层格式 计算效率 quintic nonlinear Schrodinger equation compact finite difference scheme optimal error estimate linearized four-level scheme computational efficiency
  • 相关文献

参考文献6

二级参考文献85

  • 1陈娟,潘小明.带五次项的非线性Schrodinger方程的一个守恒差分格式[J].徐州师范大学学报(自然科学版),2006,24(4):40-43. 被引量:3
  • 2王询,曹圣山.带五次项的非线性Schrodinger方程新差分格式[J].中国海洋大学学报(自然科学版),2009,39(S1):487-491. 被引量:4
  • 3Griffiths D J. Introduction to Quantum Mechanics. Englewood Cliffs, N J: Prentice-Hall, 1995.
  • 4Menyuk C R. Stability of solitons in birefringent optical fibers. J Opt Soc Amer B Opt Phys, 1998, 5:392-402.
  • 5Wadati M, Izuka T, Hisakado M. A coupled nonlinear Schrodinger equation and optical solitons. J Phys Soc Japan, 1992, 61:2241-2245.
  • 6Akrivis G D. Finite difference discretization of the cubic SchrSdinger equation. IMA J Numer Anal, 1993, 13:115-124.
  • 7Chan T, Shen L. Stability analysis of difference schemes for variable coefficient SchrSdinger type equations. SIAM J Numer Anal, 1987, 24:336-349.
  • 8Chang Q, Jia E, Sun W. Difference schemes for solving the generalized nonlinear SchrSdinger equation. J Comput Phys, 1999, 148:397-415.
  • 9Dai W. An unconditionally stable three-level explicit difference scheme for the Schr6dinger equation with a variable coefficient. SIAM J Numer Anal, 1992, 29:174-181.
  • 10Dehghan M, Taleei A. A compact split-step finite difference method dor solving the nonlinear SchrSdinger equations with constant and variable coefficients. Comput Phys Comm, 2010, 181:43-51.

共引文献46

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部