摘要
针对当前大型供冷建筑室温预测方法精度不高,难以满足空调系统节能优化控制的问题,提出基于等效热模型的递推最小二乘辨识-卡尔曼滤波(RLS-KF)室温预测方法.为了描述建筑的非稳态热工特性,通过等效电路法建立三阶的建筑热模型,选择空调冷负荷、室外温度和太阳辐射强度作为预测模型输入变量,并利用RLS算法在线辨识模型参数,同时针对单一RLS算法预测精度不高的问题,构造伪测量值,将KF算法应用于室温预测问题以提高预测精度.以广东某办公建筑供冷条件下室温为研究对象对文中方法进行验证,预测结果表明,RLS-KF算法较单一的RLS算法的预测精度和稳定性大幅提高,短期室温预测性能更为优越.
For the indoor temperature prediction method for a large cooling building is cannot accurately meet the requirement of energy optimal control for HVAC system,this paper proposes that an equivalent thermal model for building on the basis of a recursive least squares-Kalman filtering method(RLS-KF)for indoor temperature prediction.In order to describe the unsteady state thermal characteristics of the building,a third-order building thermal model is established by equivalent circuit method,and air-conditioning cooling load,ambient temperature and solar radiation intensity are selected as input variables of the model.The RLS method is used to identify the model parameters online.However,aiming at the low prediction accuracy of single RLS method,a pseudo-measurement va-lue is constructed,and the KF algorithm is applied to the room temperature prediction.By taking an office building in Guangdong for example to verify the method proposed in this paper,the results show that the prediction accuracy and stability of RLS-KF algorithm is much higher than that of a single RLS method,and the performance is better at short-term room temperature prediction.
作者
闫军威
石凯
周璇
YAN Jun-wei;SHI Kai;ZHOU Xuan(School of Mechanical and Automotive Engineering∥City Air-Conditioning Energy Conservation and Control Project Technology Research Exploitation Center of Guangdong,South China University of Technology,Guangzhou 510640,Guangdong,China)
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2018年第10期42-49,共8页
Journal of South China University of Technology(Natural Science Edition)
基金
国家自然科学基金青年科学基金资助项目(51408233)
广东省自然科学基金资助项目(2018A030313352)
广东省科技计划项目(2016B090918105
2017A020216023)~~
关键词
建筑热模型
递推最小二乘辨识
卡尔曼滤波
伪测量值
室温预测
thermal model for building
recursive least squares identification
Kalmal filtering
pseudo-measurement value
indoor temperature prediction