期刊文献+

基于等效热模型的供冷建筑RLS-KF室温预测方法 被引量:3

RLS-KF Indoor Temperature Predictive Method for Cooling Building in Terms of Equivalent Thermal Model
下载PDF
导出
摘要 针对当前大型供冷建筑室温预测方法精度不高,难以满足空调系统节能优化控制的问题,提出基于等效热模型的递推最小二乘辨识-卡尔曼滤波(RLS-KF)室温预测方法.为了描述建筑的非稳态热工特性,通过等效电路法建立三阶的建筑热模型,选择空调冷负荷、室外温度和太阳辐射强度作为预测模型输入变量,并利用RLS算法在线辨识模型参数,同时针对单一RLS算法预测精度不高的问题,构造伪测量值,将KF算法应用于室温预测问题以提高预测精度.以广东某办公建筑供冷条件下室温为研究对象对文中方法进行验证,预测结果表明,RLS-KF算法较单一的RLS算法的预测精度和稳定性大幅提高,短期室温预测性能更为优越. For the indoor temperature prediction method for a large cooling building is cannot accurately meet the requirement of energy optimal control for HVAC system,this paper proposes that an equivalent thermal model for building on the basis of a recursive least squares-Kalman filtering method(RLS-KF)for indoor temperature prediction.In order to describe the unsteady state thermal characteristics of the building,a third-order building thermal model is established by equivalent circuit method,and air-conditioning cooling load,ambient temperature and solar radiation intensity are selected as input variables of the model.The RLS method is used to identify the model parameters online.However,aiming at the low prediction accuracy of single RLS method,a pseudo-measurement va-lue is constructed,and the KF algorithm is applied to the room temperature prediction.By taking an office building in Guangdong for example to verify the method proposed in this paper,the results show that the prediction accuracy and stability of RLS-KF algorithm is much higher than that of a single RLS method,and the performance is better at short-term room temperature prediction.
作者 闫军威 石凯 周璇 YAN Jun-wei;SHI Kai;ZHOU Xuan(School of Mechanical and Automotive Engineering∥City Air-Conditioning Energy Conservation and Control Project Technology Research Exploitation Center of Guangdong,South China University of Technology,Guangzhou 510640,Guangdong,China)
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第10期42-49,共8页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金青年科学基金资助项目(51408233) 广东省自然科学基金资助项目(2018A030313352) 广东省科技计划项目(2016B090918105 2017A020216023)~~
关键词 建筑热模型 递推最小二乘辨识 卡尔曼滤波 伪测量值 室温预测 thermal model for building recursive least squares identification Kalmal filtering pseudo-measurement value indoor temperature prediction
  • 相关文献

参考文献2

二级参考文献33

  • 1范洪达,李相民,马向玲.卡尔曼滤波算法的本质及直观理解[J].海军航空工程学院学报,2001,16(4):466-468. 被引量:7
  • 2林成涛,仇斌,陈全世.电动汽车电池功率输入等效电路模型的比较研究[J].汽车工程,2006,28(3):229-234. 被引量:52
  • 3沈明卫,郝飞麟.自然通风下栽培番茄的单栋温室内气流场稳态模拟[J].农业机械学报,2006,37(5):101-105. 被引量:14
  • 4戴海峰,魏学哲,孙泽昌.基于扩展卡尔曼滤波算法的燃料电池车用锂离子动力电池荷电状态估计[J].机械工程学报,2007,43(2):92-95. 被引量:45
  • 5Johnson V H.Battery performance models in ADVISOR[J].Journal of Power Sources,2002 (110):321-329.
  • 6Chen Min,Rincon-Mora G A.Accurate electrical battery model capable of predicting runtime and I-V performance[J].IEEE Transactions on Energy Conversion,2006,21(2):504-511.
  • 7Cui Naxin,Zhang Chengui.A combined method of battery SOC estimation for electric vehicles[C] //Proceedings of 2010 the 5th IEEE Conference.Taichung:IEEE,2010:1147-1151.
  • 8Windarko Novie Ayub,Choi Jaeho,Chung Gyo-Bum.SOC estimation of LiPB batteries using extended Kalman filter based on high accuracy electrical model[C] //Proceedings of 2011 IEEE 8th International Conference.Jeju:IEEE,2011:2015-2022.
  • 9Xu Long,Wang Junping,Chen Quanshi.Kalman filtering state of charge estimation for battery management system based on a stochastic fuzzy neural network battery model[J].Electrical Power and Energy Systems,2012,53(1):33-39.
  • 10He Hongwen,Xiong Rui,Zhang Xiaowei,et al.State-of-charge estimation of the lithium-ion battery using an adaptive extended Kalman filter based on an improved thevenin model[J].IEEE Transactions on Vehicular Technology,2011,60 (4):1461-1469.

共引文献35

同被引文献26

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部