期刊文献+

TensorFlow平台上基于MobileNet模型的商品识别 被引量:5

CommodityRecognition based on MobileNetModel on TensorFlow Platform
下载PDF
导出
摘要 TensorFlow是Google基于DistBelief研发的第二代人工智能学习系统,文章在此平台上基于MobileNet模型,利用超市中商品的图片进行迁移学习,最终获得五个对超市商品有较高识别率的模型,最高测试集精度可达87.4%,具有模型小、训练时间短的优点,可部署于无人超市及物流分拣等领域。 TensorFlow is the second generation artificial intelligence learning system based on DistBelief developed by Google.The research in this paper is based on MobileNet model on this platform. By using the pictures of goods in the supermarket to carry on transfer learning, fivemodels withhigh recognition rate to the goodshave been obtained, which has the advantages of small model and short training time, and the highest test set accuracy is up to 87.4%. Besides, this model can be easily deployed in several areas such as unmanned supermarkets and logistics sorting.
作者 王傲然 刘玮 WangAoran;Liu Wei(School of Infonnation and Electrical Engineering,Zhejiang University City College,Hangzhou 310015,China)
出处 《信息通信》 2018年第12期49-50,共2页 Information & Communications
基金 浙江大学城市学院大学生科研训练项目(XZ2018522038) 浙江省高等教育学会2014年度高等教育研究课题 杭州市科技局规划项目(20160533B96)
关键词 人工智能 深度学习 迁移学习 图像识别 TensorFlow MobileNet Artificial intelligence Deep learning Transfer learning Image recognition TensorFlow MobileNet
  • 相关文献

参考文献4

二级参考文献93

  • 1任翠池,杨淑莹,洪俊.基于BP神经网络的手写字符识别[J].天津理工大学学报,2006,22(4):80-82. 被引量:4
  • 2张斌,赵玮烨,李积宪.基于BP神经网络的手写字符识别系统[J].兰州交通大学学报,2007,26(1):18-20. 被引量:1
  • 3金连文,徐秉铮.基于多级神经网络结构的手写体汉字识别[J].通信学报,1997,18(5):21-27. 被引量:19
  • 4Ben-David S,Blitzer J,Crammer K,Pereira F.Analysis of representations for domain adaptation.In:Platt JC,Koller D,Singer Y,Roweis ST,eds.Proc.of the Advances in Neural Information Processing Systems 19.Cambridge:MIT Press,2007.137-144.
  • 5Blitzer J,McDonald R,Pereira F.Domain adaptation with structural correspondence learning.In:Jurafsky D,Gaussier E,eds.Proc.of the Int’l Conf.on Empirical Methods in Natural Language Processing.Stroudsburg PA:ACL,2006.120-128.
  • 6Dai WY,Xue GR,Yang Q,Yu Y.Co-Clustering based classification for out-of-domain documents.In:Proc.of the 13th ACM Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2007.210-219.[doi:10.1145/1281192.1281218].
  • 7Dai WY,Xue GR,Yang Q,Yu Y.Transferring naive Bayes classifiers for text classification.In:Proc.of the 22nd Conf.on Artificial Intelligence.AAAI Press,2007.540-545.
  • 8Liao XJ,Xue Y,Carin L.Logistic regression with an auxiliary data source.In:Proc.of the 22nd lnt*I Conf.on Machine Learning.San Francisco:Morgan Kaufmann Publishers,2005.505-512.[doi:10.1145/1102351.1102415].
  • 9Xing DK,Dai WY,Xue GR,Yu Y.Bridged refinement for transfer learning.In:Proc.of the Ilth European Conf.on Practice of Knowledge Discovery in Databases.Berlin:Springer-Verlag,2007.324-335.[doi:10.1007/978-3-540-74976-9_31].
  • 10Mahmud MMH.On universal transfer learning.In:Proc.of the 18th Int’l Conf.on Algorithmic Learning Theory.Sendai,2007.135-149.[doi:10,1007/978-3-540-75225-7_14].

共引文献500

同被引文献31

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部