期刊文献+

平衡搜索的改进人工蜂群算法 被引量:3

Improved Artificial Bee Colony Algorithm Based on Balanced Search
下载PDF
导出
摘要 针对人工蜂群(ABC)算法局部搜索能力弱的问题,提出一种平衡搜索的人工蜂群算法(BSABC).首先,采用一种基于对数函数的的适应度评价方式,用于减小选择压力,在一定程度上避免陷入局部最优.其次,受微分进化算法的启发,提出一种新的搜索策略,通过当前最优个体指导进化方向,使候选解的产生倾向于当前最优解,同时避免陷入局部最优.对6个经典测试函数进行仿真实验,并与经典的改进人工蜂群算法对比测试,结果表明:所提出的算法在收敛速度和收敛精度上都有显著的提升. Aim at the drawback of artificial bee colony(ABC)algorithm with weak local search capability,an artificial bee colony algorithm based on balanced search(BSABC)is proposed.Firstly,improved fitness evaluation methods based on the logarithmic function is introduced to minimize selection pressure and avoid to fall into local optimum to a certain extent.Secondly,enlightened by the differential evolution algorithm,a novel search strategy is proposed,which conducts the evolution direction of the candidate solution,tending to the current optimal solution,and at the same time avoiding to fall into the local optimum.The simulating experiments were conducted on a benchmark suite of 6 test functions,the results demonstrate that BSABC has significant enhancement in convergent speed and convergent accuracy compared with the basic ABC algorithm.
作者 刘晓芳 柳培忠 骆炎民 范宇凌 LIU Xiaofang;LIU Peizhong;LUO Yanmin;FAN Yuling(College of Engineering,Huaqiao University,Quanzhou 362021,China;Universities Engineering Research Center of Fujian Province Industrial Intelligent Technology and Systems,Huaqiao University,Quanzhou 362021,China;College of Computer Science and Technology,Huaqiao University,Xiamen 361021,China)
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2019年第1期128-132,共5页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(61203242) 福建省物联网云计算平台建设资助项目(2013H2002) 华侨大学研究生科研创新能力培育计划资助项目(1511322003)
关键词 人工蜂群算法 局部搜索 群智能算法 适应度评价 搜索策略 artificial bee colony algorithm local search swarm intelligence algorithm fitness evaluation search strategy
  • 相关文献

参考文献6

二级参考文献84

  • 1冯远静,冯祖仁,彭勤科.一类自适应蚁群算法及其收敛性分析[J].控制理论与应用,2005,22(5):713-717. 被引量:18
  • 2Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
  • 3Dervis Karaboga, Bahriye Akay. A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation, 2009, 214(1): 108-132.
  • 4Guopu Zhu, Sam Kwong. Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation, 2010, 217(7): 3166-3173.
  • 5Xu Chunfan, Duan Haibin. Artificial bee colony(ABC) optimized edge potential function(EPF) approach to targetrecognition for low-altitude aircraft[J]. Pattern Recognition Letters, 2010, 31(13): 1759-1772.
  • 6Szeto W Y, Wu Yongzhong, Sin C Ho. An artificial bee colony algorithm for the capacitated vehicle routing problem[J]. European J of Operational Research, 2011, 215(1): 126-135.
  • 7Omkar S N, Senthilnath J, Rahul Khandelwal, et al. Artificial bee colony(ABC) for multi-objective design optimization of composite structures[J]. Applied Soft Computing, 2011, 11(1): 489-499.
  • 8Ming-Huwi Homg. Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation[J]. Expert Systems with Applications, 2011, 38(11): 13785-13791.
  • 9Karaboga D, Ozturk C. A novel clustering approach: artificial bee colony(ABC) algorithm[J]. Applied Soft Computing, 2011, 11 (I): 652-657.
  • 10Gao Wei-feng, Liu. San-yang. A modified artificial bee colony algorithm[J]. Computers & Operations Research, 2012, 39(3): 687-697.

共引文献249

同被引文献35

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部