期刊文献+

理论计算研究半导体晶体表面能与能带各向异性对光生电荷分离的影响

A theoretical investigation on the effects of surface energy and band energy anisotropy of semiconductor crystals on photogenerated charge separation
下载PDF
导出
摘要 利用半导体晶面工程促进电荷分离是提高光催化反应效率的重要措施之一,但如何理解和解释其分离机制还存在诸多争议.针对3个典型的半导体体系TiO2(锐钛矿)、Cu2WS4和SrTiO3,利用密度泛函理论计算,从表面能和体相能带的各向异性这两个角度来探讨它们对光生电子-空穴对分离的影响.结果表明,晶面表面能的差异是发生电荷分离的必要条件,而利用体相能带的各向异性能够解释实验中观测到的电荷分离方向. Using crystal facet engineering of semiconductors to generate the photogenerated charge separation is an important measure to improve the efficiency of photocatalytic reaction.However,there are still many controversies over how to understand and explain the separation mechanism.In this paper,three typical semiconductor systems,TiO2(anatase),Cu2WS4 and SrTiO3,are studied using density functional theory,and the effects of surface energy and band energy anisotropy on photogenerated electron-hole pair separation are explored.The results indicate that the difference in surface energy is the necessary condition for charge separation.Moreover,band energy anisotropy along different facet directions is an important intrinsic factor for charge separation.
作者 魏政德 赵仪 WEI Zhengde;ZHAO Yi(College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,China)
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第1期11-18,共8页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(21573175 21773191)
关键词 电荷分离 表面能 能带各向异性 charge separation surface energy band energy anisotropy
  • 相关文献

参考文献2

二级参考文献69

  • 1Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59-6 1.
  • 2Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176-2179.
  • 3Yang, H. G.; Sun, C. H.; Qiao, S. z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638-642.
  • 4Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732-735.
  • 5Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692-697.
  • 6Huang, M. H.; Lin, P. H. Shape-controlled synthesis ofpolyhedral nanocrystals and their facet-dependent properties. Adv. Funct. Mater. 2012, 22, 14-24.
  • 7Rabuffetti, F. A.; Kim, H. S.; Enterkin, J. A.; Wang, Y. M.; Lanier, C. H.; Marks, L. D.; Poeppelmeier, K. R.; Stair, P. C. Synthesis-dependent first-order Raman scattering in SrTiO3 nanocubes at room temperature. Chem. Mater. 2008, 20, 5628-5635.
  • 8Viswanath, B.; Kundu, P.; HaIder, A.; Ravishankar, N. Mechanistic aspects of shape selection and symmetry breaking during nanostructure growth by wet chemical methods. J. Phys. Chem. C 2009, 113, 16866-16883.
  • 9Chiu, C. Y.; Li, Y. J.; Ruan, L. Y.; Ye, X. C.; Murray, C. B.; Huang, Y. Platinum nanocrystals selectively shaped using facet-specific peptide sequences. Nat. Chem. 2011, 3, 393 399.
  • 10Lee, K.; Kim, M.; Kim, H. Catalytic nanoparticles being facet-controlled. J. Mater. Chem. 2010, 20, 3791-3798.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部