期刊文献+

基于AFSA-SVM的滚动轴承故障诊断研究 被引量:9

Bearing Fault Diagnosis Based on Artificial Fish Swarm Optimization Support Vector Machine Algorithm
下载PDF
导出
摘要 针对滚动轴承运行过程中引发的滚动体故障、内圈故障以及外圈故障,文章第一次将人工鱼群优化支持向量机的算法用于滚动轴承故障类型的诊断识别。同时,将该算法诊断识别的结果与PSO-SVM、GA-SVM的结果进行比较。通过对比分析可知,该算法故障诊断识别的准确率为95%,PSO-SVM的准确率为85%,GA-SVM的准确率为87.5%。这表明了,该算法在滚动轴承故障类型的诊断识别方面,具有良好的故障诊断识别效果。 For the rolling element fault,inner ring fault and outer ring fault caused by rolling bearing operation,the artificial fish swarm optimization support vector machine algorithm is used for fault diagnosis and identification of rolling bearing for the first time.At the same time,the algorithm is compared with the fault diagnosis results of PSO-SVM and GA-SVM.Through comparison and analysis,the accuracy of the algorithm for fault diagnosis and recognition is 95%,the accuracy of PSO-SVM is 82.5%,and the accuracy of GA-SVM is 87.5%.This indicates that the algorithm has a good fault diagnosis and recognition effect in the diagnosis and identification of rolling bearing fault types.
作者 姬盛飞 王丽君 吉南阳 JI Sheng-fei;WANG Li-jun;JI Nan-yang(Department of Mechanical Engineering,North China University of Water Resources and Electric Power,Zhengzhou 450045,China)
出处 《组合机床与自动化加工技术》 北大核心 2019年第1期115-117,共3页 Modular Machine Tool & Automatic Manufacturing Technique
基金 河南省高校科技创新团队支持计划(19IRTSTHN011) 河南省研究生教育教学改革研究与实践项目(2017SJGLX0 06Y) 郑州测控技术与仪器重点实验室(121PYFZX181) 华北水利水电大学第九届研究生创新项目(YK-2017-08)
关键词 滚动轴承 人工鱼群算法 支持向量机 故障诊断 rolling bearing artificial fish swarm algorithm support vector machine fault diagnosis
  • 相关文献

参考文献8

二级参考文献80

共引文献1465

同被引文献93

引证文献9

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部