期刊文献+

基于Stacking融合深度学习模型和传统机器学习模型的短文本情感分类研究 被引量:5

Study on the short text sentiment classification based on stacking fusion deep learning model and traditional machine learning model
下载PDF
导出
摘要 短文本情感分类是一种面向主观信息分类的文本分类任务,具有重要的研究价值和广泛的应用前景,如旅游景区口碑评价、舆情跟踪、产品声誉分析等。为了提高短文本情感分类准确率,文章提出了一种基于Stacking融合深度学习模型和传统机器学习模型的短文本情感分类方法。该方法从短文本数据集分别提取TFIDF和Word2Vec特征,并作为传统机器学习模型和深度学习模型的输入,再基于Stacking技术将多个基分类器(包括Logistic,Passive Aggressive,Ridge,SVC,SVR等传统机器学习模型和深度学习文本分类模型TextRCNN)的分类结果进行融合处理,得到短文本情感分类的最终结果。该方法采用LightGBM作为Stacking最后一层的分类器,基于旅游景区网络评论数据集进行了验证。实验结果表明,该方法能够获得比最好基分类方法更好的分类效果,而且对积极、中性和消极三类情感文本的平均分类准确率达到了71.02%。 Short text sentiment classification is a text classification task oriented to subjective information classification.It has important research value and broad application prospects,such as reputation evaluation of tourist attractions,public opinion tracking,and product reputation analysis.In order to improve the accuracy of short text sentiment classification,this paper proposes a short text sentiment classification method based on Stacking fusion deep learning model and traditional machine learning model.The method extracts TFIDF and Word2Vec features from short text datasets and uses them as input to traditional machine learning models and deep learning models.Based on Stacking technology,multiple base classifiers(including Logistic,Passive Aggressive,Ridge,SVC,SVR,etc.)The classification results of the traditional machine learning model and the deep learning text classification model TextRCNN are merged to obtain the final result of the short text sentiment classification.This method uses LightGBM as the classifier of the last layer of Stacking,which is verified based on the travel scenic network comment data set.The experimental results show that the proposed method can obtain better classification results than the best base classification method,and the average classification accuracy rate of positive,neutral and negative emotional texts reaches 71.02%.
作者 周青松 范兴容 Zhou Qingsong;Fan Xingrong(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Institute of Electronic Information and Network Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《无线互联科技》 2018年第24期63-65,共3页 Wireless Internet Technology
基金 重庆市自然科学基金资助 项目编号:cstc2018jcyjAX0587
关键词 短文本 情感分类 TFIDF Word2Vec STACKING short text sentiment classification TFIDF Word2Vec Stacking
  • 相关文献

参考文献6

二级参考文献74

  • 1刘永丹,曾海泉,李荣陆,胡运发.基于语义分析的倾向性文本过滤[J].通信学报,2004,25(7):78-85. 被引量:34
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:122
  • 4王卫玲,刘培玉,初建崇.一种改进的基于条件互信息的特征选择算法[J].计算机应用,2007,27(2):433-435. 被引量:23
  • 5张启蕊,董守斌,张凌.文本分类的性能评估指标[J].广西师范大学学报(自然科学版),2007,25(2):119-122. 被引量:7
  • 6知网[EB/OL].[2009-03-12].http://www.keenage.com.
  • 7Hatzivassiloglou V, McKeown K R. Predicting the Semantic Orientation of Adjectives [A]//Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL[C]. 1997:174-181.
  • 8Peter T, Michael L. Measuring Praise and Criticism: Inference of Semantic Orientation from Association [J]. ACM Transactions on Information Systems, 2003,21 (4) : 315-346.
  • 9Peter D T. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews[C]//Proceeding of the Association for Computational Linguistics 40th Anniversary Meeting. New Brunswick, N. J. , 2002.
  • 10Pang Bo, Lee Lillian, Vaithyanathan S. Thumbs up? Sentiment classification using machine learning techniques [C] //Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing. 2002:79-86.

共引文献266

同被引文献21

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部