期刊文献+

串联式叉型滞后簇发振荡及其动力学机制 被引量:7

SERIES-MODE PITCHFORK-HYSTERESIS BURSTING OSCILLATIONS AND THEIR DYNAMICAL MECHANISMS
下载PDF
导出
摘要 簇发振荡是自然界和科学技术中广泛存在的快慢动力学现象,其具有与通常的振荡显著不同的特性.根据不同的动力学机制可将其分为多种模式,例如,"点–点"型簇发振荡和"点–环"型簇发振荡等.叉型滞后簇发振荡是由延迟叉型分岔诱发的一类具有简单动力学特性的"点–点"型簇发振荡.研究以多频参数激励Duffing系统为例,旨在揭示一类与延迟叉型分岔相关的具有复杂动力学特性的簇发振荡,即串联式叉型滞后簇发振荡.考虑了一个参激频率是另一个的整倍数情形,利用"频率转换快慢分析法"得到了多频参数激励Duffing系统的快子系统和慢变量,分析了快子系统的分岔行为.研究结果表明,快子系统可以产生两个甚至多个叉型分岔点;当慢变量穿越这些叉型分岔点时,形成了两个或多个叉型滞后簇发振荡;这些簇发振荡首尾相接,最终构成了所谓的串联式叉型滞后簇发振荡.此外,分析了参数对串联式叉型滞后簇发振荡的影响. Bursting oscillations is a spontaneous physical phenomenon existing in natural science,which has various patterns according to their dynamical regimes.For instance,bursting of point-point type means bursting patterns related to transition behaviors among di erent equilibrium attractors.Pitchfork-hysteresis bursting,induced by delayed pitchfork bifurcation,is a kind of point-point type bursting pattern showing simple dynamical characteristics.The present paper takes the Duffng system with multiple-frequency parametric excitations as an example in order to reveal bursting patterns,related to delayed pitchfork bifurcation,showing complex characteristics,i.e.,the series-mode pitchfork-hysteresis bursting oscillations.We considered the case when one excitation frequency is an integer multiple of the other,obtained the fast subsystem and the slow variable of the Duffing system by frequency-transformation fast-slow analysis,and analyzed bifurcation behaviors of the fast subsystem.Our study shows that two or multiple pitchfork bifurcation points can be observed in the fast subsystem,and thus two or multiple pitchfork-hysteresis bursting patterns are created when the slow variable passes through these points.In particular,the pitchfork-hysteresis bursting patterns are connected in series,and as a result,the so-called series-mode pitchfork-hysteresis bursting oscillations are generated.Besides,the effects of parameters on the series-mode pitchfork-hysteresis bursting oscillations are analyzed.It is found that the damping of the system and the maximum excitation amplitude show no qualitative impact on corresponding dynamical mechanisms,while the smaller one may lead to vanish of busting oscillations.Our findings reveal the road from simple dynamical characteristics of point-point type bursting oscillation related to complex one,thereout,a complement and expansion for nowadays bursting dynamics is obtained.
作者 张毅 韩修静 毕勤胜 Zhang Yi;Han Xiujing;Bi Qinsheng(Faculty of Civil Engineering and Mechanics,Jiangsu University,Zhenjiang 212013,Jiangsu,China)
出处 《力学学报》 EI CSCD 北大核心 2019年第1期228-236,共9页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(11572141 11632008 11772161 11502091 11872188) 江苏大学青年骨干教师培养工程资助项目
关键词 DUFFING系统 慢变周期参数 延迟叉型分岔 串联式簇发振荡 频率转换快慢分析法 Duffng system slowly varying periodic parameters delayed pitchfork bifurcation series-mode bursting oscillations frequency-transformation fast-slow analysis
  • 相关文献

参考文献6

二级参考文献54

  • 1ZHANG Li1,WANG HuaiLei1 & HU HaiYan1,2 1 MOE Key Lab of Mechanics and Control of Aerospace Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China,2 School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China.Global view of Hopf bifurcations of a van der Pol oscillator with delayed state feedback[J].Science China(Technological Sciences),2010,53(3):595-607. 被引量:6
  • 2BI QinSheng Faculty of Science,Jiangsu University,Zhenjiang 212013,China.The mechanism of bursting phenomena in Belousov-Zhabotinsky(BZ) chemical reaction with multiple time scales[J].Science China(Technological Sciences),2010,53(3):748-760. 被引量:11
  • 3谌龙,王德石.陈氏混沌系统的非反馈控制[J].物理学报,2007,56(1):91-94. 被引量:8
  • 4Chen ZY, Zhang XF, Bi QS. Bifurcations and chaos of coupled electrical circuits. Nonlinear Analysis: Real World Applications, 2008, 9:1158-1168.
  • 5Cincotti S, Stefano SD. Complex dynamical behaviours in two non-linearly coupled Chua's circuits. Chaos, Solitons & Fractals, 2004, 21:633-641.
  • 6Hartley TT. Mossayebi F. Matrix integrators for real-time simulation of singular systems. In: Proc of Amer Control Conf, Pittsburgh, USA, 1989. 419-423.
  • 7Hassan S, Aria A. Adaptive chaos synchronization in Chua's systems with noisy parameters. Mathematics and Computers in Simulation, 2008, 79(3): 233-241.
  • 8Yassen MT. Adaptive control and synchronization of a modified Chua's circuit system. Applied Mathematics and Computation, 2003 (135): 113-128.
  • 9Yang ZQ, Lu QS. Different types of bursting in Chay neuronal model. Science in China Series G: Physics, Mechanics & Astronomy, 2008, 51 (6): 687-698.
  • 10Eugene MI. Neural excitability, Spiking and Bursting. International Journal of Bifurcation and Chaos, 2000, 10(6): 1171-1266.

共引文献36

同被引文献62

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部