期刊文献+

基于动量方法的受限玻尔兹曼机的一种有效算法 被引量:11

An Effective Algorithm of Restricted Boltzmann Machine Based on Momentum Method
下载PDF
导出
摘要 深度学习给模式识别与机器学习带来了巨大的变化,已成功应用于语言处理、图像处理、信号处理、商业经济等方面.受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)是一个表示能力强、很好的生成模型,多个RBM堆叠而构成的深度信念网络模型(Deep Belief Nets,DBN)的学习时间会较长.为加快整个DBN网络的学习时间和提高分类效果,本文提出基于动量方法 RBM的一种有效算法.该算法在RBM预训练阶段,结合梯度上升算法特点采取快速上升的动量方式;以及BP算法微调阶段,为了能精确的找到最优点,结合梯度下降算法特点,相应的引入缓慢下降式的动量项,即在梯度上升和梯度下降过程中都使用不同的动量方式.本文算法在MNIST手写数字体和CMU-PIE人脸数据库上进行了实验,结果表明,提出的改进算法能够有效地增强图像特征的表达能力,提高图像的分类效果和实验效率. Deep learning is bringing revolution to pattern recognition and machine learning,which has been successfully applied to language processing,image processing,signal processing,business economy and so on.Restricted Boltzmann machine (RBM) is a strong representation and generative mod el,however,the learning time of deep belief nets (DBN),which consists of multiple stacking RBM,will be longer.In this paper,the improved momentum method is used not only in gradient ascent algorithm but also in gradient descent algorithm for both classification accuracy enhancement and training time decreasing.According to the characteristics of the gradient ascent algorithm,a rapidly ascending momentum method is used in the RBM pre-training phase,which greatly improves the speed of learning.According to the characteristics of the gradient descent algorithm,an improved slowly descending momentum term is also used in the fine-tuning stage to accurately find the best point.Through the recognition experiments on the MNIST dataset and CMU-PIE face dataset,the achieved results show that the improved momentum algorithm can effectively enhance the ability of image feature expression and improve both accuracy and computation efficiency.
作者 沈卉卉 李宏伟 SHEN Hui-hui;LI Hong-wei(School of Mathematics and Physics,China University of Geosciences,Wuhan,Hubei 430074,China;School of Statistics & Information Management,Hubei University of Economics,Wuhan,Hubei 430205,China;Hubei Subsurface Multi-scale Imaging Key Laboratory,China University of Geosciences,Wuhan,Hubei 430074,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2019年第1期176-182,共7页 Acta Electronica Sinica
基金 湖北省教育厅科技处重点项目(No.20182203) 湖北省高等学校优秀中青年创新团队计划项目(No.T201516)
关键词 深度学习 受限玻尔兹曼机 Kullback-Leibler (KL)距离 蒙特卡罗思想 动量 deep learning restricted Boltzmann machine Kullback-Leibler (KL) divergence Monte Carlo method momentum
  • 相关文献

参考文献6

二级参考文献53

  • 1王守觉,曹文明.半导体神经计算机的硬件实现及其在连续语音识别中的应用[J].电子学报,2006,34(2):267-271. 被引量:3
  • 2R Mittelman, et al. Weakly supervised learning of mid-level features with beta-BemouUi process restricted Boltzmann ma- chines[ A ]. Proceedings of IEEE International Conference on Computer Vision and Pattem Recognition [ C ]. USA: 1FF.E, 2013.476 - 483.
  • 3M Ranzato, et al. On deep generative models with applications to recognition[ A ]. Proceedings of IEEE Conference on Com- puter Vision and Pattern Recognition[ C ]. USA: IF.EE, 2011. 2857 - 2864.
  • 4H Lee, et al. Unsupervised learning of hierarchical representa- tions with convolutional deep belief networks[ J]. Communica- tions of the ACM,2011,54(10) :95 - 103.
  • 5Le QV, et al. Building high-level features using large scale un- supervised learning [ A ]. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing [ C ]. USA: IEEE, 2013. 8595 - 8598.
  • 6H Goh, et al. Unsupervised and supervised visual codes with re- stficted Boltzmann machines [ A ]. Proceedings of European Conference on Computer Vision [ C ]. Heidelberg Berlin: Springer, 2012. 298 - 311.
  • 7Mohamed, et al. Acoustic modeling using deep belief networks [ J ]. IEEE Transactions on Audio, Speech, and Language Pro- cessing,2012,20(1) : 14 - 22.
  • 8G E I-[mton. qiaining products of experts by nrfizing conlrastive dive[J] .Neural on,2ff/2,14(8) : 1771 - 18130.
  • 9M Welling, et al. Exponential family harmoniums with an appli- cation to information retrieval[ A ]. Advances in Neural Infor- marion Processing Systems [ C ]. Cambridge: MIT Press, 2004. 1481 - 1488.
  • 10Sinha N K, Griscik M P. A stochastic approximation method [ J ] IEEE Transactions on Systems, Man and Cybernetics, 1971,4:338- 344.

共引文献439

同被引文献158

引证文献11

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部