期刊文献+

节点增减机制下的病毒传播模型及稳定性 被引量:4

Virus Spreading Model and Its Stability Based on the Mechanism of Node Increasing and Decreasing
下载PDF
导出
摘要 该文针对网络节点的增减情况,研究网络病毒传播模型及其稳定性问题。考虑网络节点的新增和移除,构建了基于节点增减机制下的网络病毒传播模型,并运用Routh-Hurwitz稳定性判据定理,分析了模型的平衡点稳定性和基本再生数R0及其对病毒传播稳定性的影响。最后,通过改变增加节点数量以及易感状态、感染状态的节点移除率,研究3个参数对病毒传播过程的影响,并给出了仿真验证。仿真结果表明,通过调节网络节点的增减数量,能够控制病毒在网络中的传播。 According to the case of node increasing and decreasing,the network virus spreading model and its stability are researched.Considering the increasing and decreasing of network nodes,the network virus spreading model is constructed based on the mechanism of node increasing and decreasing.And then the stability of the presented model,basic reproductive number R0,and the influence of virus spreading stability are analyzed via Routh-Hurwitz stability criterion.Finally,the effects of three parameters on the process of virus transmission are studied by changing the number of nodes and the removal rate of susceptible and infected nodes.Simulations are demonstrated that network virus spreading can be controlled by effective adjusting the number of network nodes.
作者 王刚 胡鑫 陆世伟 WANG Gang;HU Xin;LU Shi-wei(Institute of Information and Navigation, Air Force Engineering University Xi’an 710077)
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2019年第1期74-79,共6页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61573017) 国家社科基金(15BGJ007)
关键词 增减机制 模型 网络 稳定性 病毒传播 mechanism of increasing and decreasing model network stability virus spreading
  • 相关文献

参考文献3

二级参考文献69

  • 1Zhou T, Liu J G, Bai W J, Chen G R, Wang B H 2006 Phys. Rev. E74 056109.
  • 2Song Y R, Jiang G P 2010 Acta Phys. Sin. 59 7546 (in Chinese).
  • 3Wu Q C, Fu X C, Yang M 2011 Chin. Phys. B 20 046401.
  • 4Pastor-Statorras R, Vespignani A 2O0, Phys. Rev. E ~30661~].
  • 5Castellano C, Pastor-Satorras R 2010 Phys. Rev. Lett. 105 218701.
  • 6Wang Y, Zheng Z G 2009 Acta Phys. Sin. 58 4421 (in Chinese).
  • 7Shi H J, Duan Z S, Chen G R 2008 Physica A 387 2133.
  • 8Wang Y Q, Jiang G P 2010Acta Phys. Sin. 59 6734 (in Chinese).
  • 9Ball F G, Knock E S, O'Neill P D 2008 Math. Biosci. 216 100.
  • 10Wang J Z, Liu Z R, Xu J H 2007 Physica A 382 715.

共引文献26

同被引文献23

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部