期刊文献+

基于BiRNN的维吾尔语情感韵律短语注意力模型 被引量:6

Uyghur Sentiment Rhythm Phrase Attention Model Based on BiRNN
下载PDF
导出
摘要 当前维吾尔语情感语音合成采用韵律边界预测方法来实现情感语音转换。通过该方法合成出来的语音,虽然可表现出相应的情感,然而其情感表现力不够理想。针对此问题,该文提出一种基于BiRNN的维吾尔语情感韵律短语注意力模型。在情感韵律转换前使用该模型进行情感分类,并将其分类结果作为韵律边界预测的输入,改进了情感韵律转换方法。使用改进的词性特征向量和韵律短语向量作为词向量的补充,从而有效提升维吾尔文文本情感分类的准确率。实验结果表明,该模型由两个单词构成的韵律短语作为特征时,准确率在维吾尔五分类情感数据集上达到了很好的分类效果。 At present,Uyghur sentimental speech synthesis uses prosodic boundary prediction method to realize emotional speech conversion.The speech synthesized by this method can express the corresponding emotions,but its emotional expression is not ideal.To solve this problem,this paper proposes an attention model of Uygur emotional prosodic phrases based on BiRNN.The model is used to classify emotion before prosodic conversion,and the classification results are used as input for prosodic boundary prediction to improve the method of prosodic conversion.The improved part-of-speech feature vector and prosodic phrase vectors are used to supplement the word vector,which effectively improve the accuracy of Uyghur text sentiment classification.The experimental results show that when the prosodic phrase composed of two words is used as a feature,the accuracy of the model achieves the best classification effect on the Uyghur five-category sentiment data set.
作者 帕丽旦.木合塔尔 买买提阿依甫 杨文忠 吾守尔.斯拉木 MUHETAER Palidan;Maimaitiayifu;YANG Wen-zhong;SILAMU Wushouer(College of Information Science and Engineering, Xinjiang University Urumqi 830046)
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2019年第1期88-95,共8页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61363063 U1603115) 国家"973"重点基础研究计划(2014CB340506)
关键词 神经网络 词性标注 韵律短语 情感分析 语音合成 维吾尔语 neural network part of speech tagging prosodic phrase sentiment analysis speech synthesis Uyghur
  • 相关文献

参考文献5

二级参考文献42

  • 1Vasileios Hatzivassiloglou, Kathleen R. McKeown. Predicting the semantic orientation of adjectives[A]. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL[C], 1997:174- 181.
  • 2Turney, Peter, Littman Michael. Measuring praise and criticism: Inference of semantic orientation from association[J]. ACM Transactions on Information Systems, 2003, 21(4): 315- 346.
  • 3Turney ,Peter. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews[A]. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics[C]. 2002:417 -424.
  • 4Bo Pang,Lillian Lee, Shivanathan Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques[A]. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing[C]. 2002:79 - 86.
  • 5Bo Pang,Lillian Lee. Seeing Stars: Exploiting Class Relationships for Sentiment Categorizalion with respect to Rating Seales[A]. ACL2005, 115-124.
  • 6K Dave, S lawrence, DM Pennock. , Mining the peanut gallery: opinion extraction and semantic classification of product reviews[A]. WWW2003, 519-28.
  • 7Bing Liu, Minqing Hu, Junsheng Cheng. Opinion observer: analyzing and comparing opinions on the Web[A].WWW2005, 324- 351.
  • 8HowNet[R]. HowNet's Home Page. http://www. keenage.com.
  • 9刘群 李素建.基于《知网》的词汇语义相似度的计算[A]..第三届汉语词汇语义学研讨会[C].台北,2002..
  • 10Martins A,Figueiredo M,Aguiar P.Kernels and similarity measures for text classification[C]//Proceedings of Conf Tele’2007,New York,USA,2007:1-4.

共引文献489

同被引文献66

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部