期刊文献+

基于LMD能量熵的滚动轴承故障特征提取 被引量:9

Fault Feature Extraction for Rolling Bearing based on LMD Energy Entropy
下载PDF
导出
摘要 为了对滚动轴承运行状态进行有效的判断,利用局部均值分解(LMD)对滚动轴承振动信号进行分解,将复杂的多分量信号分解成多个单分量信号;针对分解后的单分量信号在各频域范围分布不均匀特点,利用LMD能量熵提取出滚动轴承振动信号的故障特征。实验结果表明,LMD能量熵具有较强的信号表征能力,可以有效提取出滚动轴承故障特征。 In order to judge the running status of rolling bearing effectively in the case of small sample,by using the local mean decomposition(LMD),the rolling bearing vibration signal is decomposed.The complex multi-component signal will be decomposed into multiple single component signals.For the characteristic that the distribution of decomposed single component signal is not uniform in the frequency range,by using the LMD energy entropy,the fault feature of rolling bearing vibration signal is extracted.The experimental results show that LMD energy entropy has a strong signal characterization capability,which can effectively extract the rolling bearing fault characteristic.
作者 徐乐 于如信 邢邦圣 陈洪峰 郎超男 Xu Le;Yu Ruxin;Xing Bangsheng;Chen Hongfeng;Lang Chaonan(Jiangsu Normal University,Xuzhou 221116,China)
机构地区 江苏师范大学
出处 《机械传动》 北大核心 2019年第1期136-139,共4页 Journal of Mechanical Transmission
基金 江苏省"六大人才高峰"高层次人才项目(ZBZZ-038) 徐州市推动科技创新专项资金项目(KC16SG243) 徐州市科技计划项目(XM13B108) 江苏师范大学博士科研支持项目(14XLR033) 江苏师范大学实验室建设与管理课题(L2017Y02 L2017Y12)
关键词 滚动轴承 局部均值分解 能量熵 特征提取 Rolling bearing Local mean decomposition Energy entropy Feature extraction
  • 相关文献

参考文献10

二级参考文献95

共引文献435

同被引文献85

引证文献9

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部