摘要
分布式风电(distributed wind generation,DWG)出力、系统负荷功率以及电动汽车(electric vehicles,PEV)无序充电功率的随机性和时序性波动为配电网中DWG的优化配置带来更多的不确定性。为此,利用季节场景与时段划分法处理DWG出力与负荷大小的时序特性,并对PEV的随机性进行概率建模。对各时段采用机会约束规划方法建立了以年度综合成本为目标的DWG优化配置模型。利用蒙特卡洛模拟嵌入保留精英策略的遗传算法的方法对典型算例进行求解,结果验证了所提模型与方法的正确性和有效性。
The stochastic and timing characteristics of distributed wind generation output,load power and electric vehicles charging load have brought more uncertainties to the optimal allocation of distributed wind generation.Therefore,season-scenario and period-division method is adopted and the stochastic characteristic of plug-in electric vehicles is modeled.Taking annul comprehensive cost as objective function,a distributed wind generation planning model based on timing characteristics is presented using chance-constrained programming method.A Monte Carlo simulation embedded genetic algorithm with elite strategy is adopted to solve a typical case and results verify the effectiveness of the proposed model.
作者
许珊
李扬
XU Shan;LI Yang(School of Electrical Engineering,Southeast University,Nanjing 210096,China)
出处
《电力需求侧管理》
2019年第1期11-15,21,共6页
Power Demand Side Management
基金
国家电网公司科技项目(XM2016020033815)~~
关键词
时序特性
分布式风电源
电动汽车
优化配置
timing characteristics
distributed wind generation
electric vehicles
optimal allocation