摘要
用高维随机矩阵理论,对高维双样本协方差矩阵相等性的检验给出一种新方法.结果表明,利用高维随机F-矩阵线性谱统计量的中心极限定理给出检验统计量的极限分布,不仅适用于高维数据,而且对于非正态的情形仍有效.
We gave a new method to test the equality of two-sample high-dimensional covariance matrices based on random matrix theory in a high-dimensional framework.The results show that using the central limit theorem for the linear spectral statistics of high-dimen sional random F-matrices,the limit distribution of the test statistics is given,which is not only suitable for high-dimensional data but also valid for non-normal cases.
作者
何冰
薄晓玲
HE Bing;BO Xiaoling(College of Mathematics,Jilin University,Changchun 130012,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2019年第1期65-71,共7页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11471140)
吉林省自然科学基金(批准号:20180101217JC)
关键词
高维数据
双样本协方差检验
高维F-矩阵
中心极限定理
high-dimensional data
two-sample covariance test
high-dimensional F-matrix
central limit theorem