摘要
稀疏子空间聚类是近年提出的高维数据聚类框架,针对实际数据并不完全满足线性子空间模型的假设,提出k近邻约束的稀疏子空间聚类算法。该算法结合数据的子空间结构,k近邻及距离信息,在稀疏子空间模型上,添加k近邻约束项。添加的约束项符合距离越小,相似系数越大的直观认识且不改变系数矩阵的稀疏性。在人脸数据集Extended YaleB、ORL、AR,物体图像数据集COIL20及手写数据集USPS上的聚类实验表明提出的算法具有良好的性能。
Sparse subspace clustering is a newly developed clustering framework for high-dimensional data.Since actual data do not completely satisfy the subspace model assumption,a novel sparse subspace clustering with k nearest neighbor constraint is proposed.The proposed algorithm combines the subspace structure,k nearest neighbor and the distance information and adds k nearest neighbor constraint term into the sparse subspace model.The added term corresponds the intuitive knowledge that closer samples have large similarity coefficients and do not change the sparsity of coefficient matrix.The experimental result on face databases Extended YaleB,ORL,AR,object image database COIL and a handwritten digits database USPS shows that the proposed algorithm has competitive performance.
作者
刘玉馨
何光辉
LIU Yuxin;HE Guanghui(College of Mathematics and Statistics,Chongqing University,Chongqing 401331,China)
出处
《计算机工程与应用》
CSCD
北大核心
2019年第3期39-45,共7页
Computer Engineering and Applications
关键词
子空间
聚类
稀疏表示
K近邻
人脸聚类
subspace
clustering
sparse representation
k nearest neighbors
face clustering