期刊文献+

k近邻约束的稀疏子空间聚类 被引量:11

Sparse Subspace Clustering with k Nearest Neighbor Constraint
下载PDF
导出
摘要 稀疏子空间聚类是近年提出的高维数据聚类框架,针对实际数据并不完全满足线性子空间模型的假设,提出k近邻约束的稀疏子空间聚类算法。该算法结合数据的子空间结构,k近邻及距离信息,在稀疏子空间模型上,添加k近邻约束项。添加的约束项符合距离越小,相似系数越大的直观认识且不改变系数矩阵的稀疏性。在人脸数据集Extended YaleB、ORL、AR,物体图像数据集COIL20及手写数据集USPS上的聚类实验表明提出的算法具有良好的性能。 Sparse subspace clustering is a newly developed clustering framework for high-dimensional data.Since actual data do not completely satisfy the subspace model assumption,a novel sparse subspace clustering with k nearest neighbor constraint is proposed.The proposed algorithm combines the subspace structure,k nearest neighbor and the distance information and adds k nearest neighbor constraint term into the sparse subspace model.The added term corresponds the intuitive knowledge that closer samples have large similarity coefficients and do not change the sparsity of coefficient matrix.The experimental result on face databases Extended YaleB,ORL,AR,object image database COIL and a handwritten digits database USPS shows that the proposed algorithm has competitive performance.
作者 刘玉馨 何光辉 LIU Yuxin;HE Guanghui(College of Mathematics and Statistics,Chongqing University,Chongqing 401331,China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第3期39-45,共7页 Computer Engineering and Applications
关键词 子空间 聚类 稀疏表示 K近邻 人脸聚类 subspace clustering sparse representation k nearest neighbors face clustering
  • 相关文献

参考文献3

二级参考文献20

  • 1Lee J S, Kuo Y M,Chung P C, et al. Naked image detectionbased on adaptive and extensible skin color mode [J]. PatternRecognition, 2007. 40(8) : 2261 - 2270.
  • 2Archibald R. Polynomial fitting for edge detection in irregularlysampled signals and images [J]. SIAM Journal on NumericalAnalysis. 2005,43(1):259 -279.
  • 3Chan T F, Vese L A. Active contours without edges [J]. IEEETrans, on Image Processing . 2001,10(2): 266 - 277.
  • 4Han Y. Feng X C,Baciu G. Variational and PCA based natural images^mentation [J], Pattern Recognition f 2013, 46(1) .1971 - 1984.
  • 5Han Y, Wang W W, Feng X C. A new fast multiphase imagesegmentation algorithm based on nonconvex regularizer [J].Pattern Recognition . 2012, 45(1) j 363 - 372.
  • 6Xiang T, Gong S. Spectral clustering with eigen vector selec-tion [J]. Pattern Recognition . 2008,41(3) : 1012 - 10^9.
  • 7Thilagamani S. A survey on image segmentation through clus-tering [J]. International Journal of Research and Reviews inInformation Sciences , 2011,1(1) : 14 - 17.
  • 8Elhamifar E, Vidal R. Sparse subspace clustering [C]//Proc.of the IEEE Con ference on Computer Vision and Pattern Rec-ognition ,2009:2790 - 2797.
  • 9Elhamifar E, Vidal R. Clustering disjoint subspaces via sparserepresentation [C] [/ Proc. of the IEEE International Conferenceon Acoustics. Speecht and Signal Processing > 2011:1926 - 1929.
  • 10Liu G, Lin Z, Yu Y. Robust subspace segmentation by low-rank representation [C] // Proc. of the International Confer-ence on Machine Learning . 2010:663 - 670.

共引文献19

同被引文献49

引证文献11

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部