期刊文献+

基于结构局部边缘模式的绿色植物物种识别 被引量:1

Green Plants Identification Based on Structural Local Edge Pattern
下载PDF
导出
摘要 植物图像的边缘检测是基于图像分析植物物种识别技术的重要环节,利用边缘检测可以增强图像中的轮廓边缘、细节等信息,达到将目标植物从图像中分离出来的目的。因此,为了在绿色植物物种识别中,将图像中的目标植物与背景分离,首先利用可变局部边缘模式算子提取植物图像的边缘特征,再通过结构化局部边缘模式对边缘特征进行编码,来刻画局部边缘。实验结果表明,提出的边缘模式思想在绿色植物物种识别上能得到更高的识别率。 The edge detection of plant image is a critical step of plants recognition technologies based on image analysis.Edge detection can enhance important information such as edge outline,details,etc.so that the purpose for separating the target plants from the image can be achieved.Therefore,in order to separate the target plants from the background in the recognition of the green plants,the edge features of the image are extracted by using the varied local edge pattern operator.Then the local edge characteristics are described better using the structure local edge pattern operator to code the edge features.The experimental results show that the proposed edge pattern has a better recognition rate in green plant species identification.
作者 孙梦茹 王瑜 邢素霞 SUN Mengru;WANG Yu;XING Suxia(Beijing Key Laboratory of Big Data Technology for Food Safety,School of Computer and Information Engineering,Beijing Technology and Business University,Beijing 100048,China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第3期167-170,共4页 Computer Engineering and Applications
基金 国家自然科学基金面上项目(No.61671028) 北京市自然科学基金面上项目(No.4162018) 北京市委组织部"高创计划"青年拔尖人才培养资助项目(No.2014000026833ZK14) 北京市属高等学校高层次人才引进与培养计划项目(No.CIT&TCD201504010)
关键词 边缘检测 可变局部边缘模式 结构化局部边缘模式 植物识别 edge detection varied local edge pattern structure local edge pattern plants identification
  • 相关文献

参考文献4

二级参考文献75

  • 1王晓峰,黄德双,杜吉祥,张国军.叶片图像特征提取与识别技术的研究[J].计算机工程与应用,2006,42(3):190-193. 被引量:114
  • 2杨静,毛宗源.基于PCA和神经网络的识别方法研究[J].计算机工程与应用,2007,43(25):246-248. 被引量:10
  • 3沈琳琳,纪震.采用精选Gabor小波和SVM分类的物体识别[J].自动化学报,2009,4(35):350-355.
  • 4DU J X, WANG X F, ZHANG G J, et al. Leaf shape based on plant species recognition [ J]. Applied Mathematics and Computa- tion, 2007, 185(2) : 883 -893.
  • 5DALIRI M R, TORR V. Robust symbolic representation for shape recognition and retrieval [ J]. Pattern Recognition, 2008, 41 (5) : 1782 - 1798.
  • 6SINGH K, GUPTA I, GUPTA S. SVM-BDT PNN and Fourier mo- ment technique for classification of leaf shape [ J]. International Journal of Signal Processing, 2010, 3(4): 67-78.
  • 7SIXTA T. Image and video-based recognition of natural objects [ D]. Prague: Czech Technical University, 2011.
  • 8ROSSATYO D R, CASANOVA D, KOLB R M, et al. Fractal anal- ysis of leaf-texture properties as a tool for taxonomic and identifica- tion purposes: a case study with mataceae ( Mi-conieae tribe) [ J] 2011, 291(1): 103-116. species from Neotropical Melasto- Plant Systematics and Evolution,.
  • 9TEIXEIRA P R F, AWRUCH A M. Numerical simulation of fluid- structure interaction using the finite element method [ J]. Computers and Fluids, 2005, 34(2): 249-273.
  • 10CHOI J Y, ROY M, PLATANIOTIS K N. Color local texture fea- tures for color face recognition [ J]. IEEE Transactions on Image Processing, 2012, 21(3): 1366-1380.

共引文献65

同被引文献20

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部