期刊文献+

考虑时变交通状况的低碳车辆路径优化 被引量:9

Low-Carbon Vehicle Routing Problem Based on Real-Time Traffic Conditions
下载PDF
导出
摘要 研究了由常发性交通拥堵造成的实时交通状况变化对低碳车辆路径优化的影响。用道路交通状态指数表示城市实时交通状况,以低碳和配送时间最短为目标建立整数规划模型进行路径优化。设计了改进的粒子群算法进行求解,得到帕累托前沿解集。数值算例表明,改进的粒子群算法能有效找到满意解。通过帕累托解集可以证明该方法可以在牺牲少量配送时间的前提下减少碳排放量。随着交通状态指数的增大碳排放量的优化效果更加明显。 This paper studies the influence of real-time traffic conditions caused by frequent traffic congestion on the vehicle routing problem with the consideration of carbon emissions.The real-time traffic conditions are represented by the traffic state index,and the integer programming model is established with the aim of carbon emissions and the delivery time.The improved particle swarm optimization algorithm is designed to solve the model.Numerical examples show that the improved particle swarm optimization algorithm can find a satisfactory solution.The Pareto solution proves that the proposed method can reduce carbon emissions.With the increase of traffic state index,the reduction of carbon emissions is more obvious.
作者 姚坤 杨斌 朱小林 YAO Kun;YANG Bin;ZHU Xiaolin(Logistics Research Center,Shanghai Maritime University,Shanghai 201306,China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第3期231-237,共7页 Computer Engineering and Applications
基金 上海市基础研究重点项目(No.15590501800) 交通运输部科技项目(No.2015328810160) 上海市科委科研计划项目(No.17DZ2280200)
关键词 时变车辆路径优化 碳排放 粒子群算法 time-dependent vehicle routing problem carbon emissions particle swarm optimization
  • 相关文献

参考文献3

二级参考文献42

  • 1李宁,邹彤,孙德宝.车辆路径问题的粒子群算法研究[J].系统工程学报,2004,19(6):596-600. 被引量:52
  • 2Dantzig G, Ramser J. The truck dispatching problem[J]. Management Science, 1959, 6(1): 80-91.
  • 3Br?ysy O, Gendreau M. Vehicle routing problem with time windows, part I: Route construction and local search[J]. Transportation Science, 2005, 39: 104-118.
  • 4Br?ysy O, Gendreau M. Vehicle routing problem with time windows, part II: Metaheuristics[J]. Transportation Science, 2005, 39: 119-139.
  • 5Najera A G, Bullinaria J A. An improved multi-objective evolutionary algorithm for the vehicle routing problem with time windows[J]. Computers & Operations Research, 2011, 38: 287-300.
  • 6Sbihi A, Eglese R W. Combinatorial optimization and green logistics[J]. 4OR: A Quarterly Journal of Operations Research, 2007, 5(2): 99-116.
  • 7Fagerholt K, Laporte G, Norstad I. Reducing fuel emissions by optimizing speed on shipping routes[J]. Journal of the Operational Research Society, 2010, 61(3): 523-529.
  • 8Bauer J, Bekta? T, Crainic T G. Minimizing greenhouse gas emissions in intermodal freight transport: An application to rail service design[J]. Journal of the Operational Research Society, 2010, 61(3): 530-542.
  • 9Kuo Y. Using simulated annealing to minimize fuel consumption for the time-dependent vehicle routing problem[J]. Computers & Industrial Engineering, 2010, 59(1): 157-165.
  • 10Demir E, Bekta? T, Laporte G. A comparative analysis of several vehicle emission models for road freight transportation[J]. Transportation Research Part D: Transport and Environment, 2011, 6(5): 347-357.

共引文献87

同被引文献91

引证文献9

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部