期刊文献+

深度学习在咽喉新生物识别中的应用研究 被引量:4

Application of Deep Learning in Identification of Throat New Organisms
下载PDF
导出
摘要 咽喉新生物是声带及其附近区域生长有新生组织,影响正常咽喉功能的咽喉常见疾病之一。目前,咽喉新生物主要是医生通过拍摄喉镜照片来进行诊断,由于医生个体临床经验的差异,在新生物疾病的诊断上往往存在不同诊断结果,常常有误诊的情况发生。而新生物疾病若不能及时确诊和治疗就有可能演变成喉癌的可能。基于此,提出了基于深度学习的咽喉新生物疾病识别算法,通过多层较小的卷积核在大量标注的训练集上逐层提取特征,在反向传播的过程中只保留有效特征,最终得到很好的拟合效果,在测试集上也达到了很好的泛化表现。具有一定的实际应用价值。 Throat new organism is the disease that new organisms grow in the area of vocal cord,which is one of common diseases that affect normal function of throat.At present,the throat new tissues are mainly diagnosed by doctors using laryngoscope photos.However,misdiagnosed cases happened because of the differences of individual clinical experience of doctors in the diagnosis of new tissue diseases often have different diagnostic results.And new tissue diseases if not timely diagnosed and treated is possible to evolve into laryngeal cancer.Based on this,this paper proposes a learning algorithm of throat new tissue disease based on deep learning.Through the multi-layer convolution kernels extracted features from a large number of labeled training sets,and only the effective features are retained in the process of reverse propagation.The studied model has an impressive fitting performance on training set and also a good generalization performance on test set.It has a certain value in the practical application.
作者 田永良 张劲 刘凯 汤炜 田卫东 TIAN Yongliang;ZHANG Jing;LIU Kai;TANG Wei;TIAN Weidong(College of Electrical Engineering and Information Technology,Sichuan University,Chengdu 610065,China;West China School/Hospital of Stomatology,Sichuan University,Chengdu 610041,China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第3期252-257,共6页 Computer Engineering and Applications
基金 国家自然科学基金面上项目(No.61571314) 四川省科技厅应用基础项目(No.2014JY0226)
关键词 深度学习 神经网络 特征 喉镜 咽喉新生物 deep learning neural network features laryngoscope throat new organisms
  • 相关文献

参考文献4

二级参考文献14

  • 1武妍,王守觉.一种通过反馈提高神经网络学习性能的新算法[J].计算机研究与发展,2004,41(9):1488-1492. 被引量:15
  • 2韩立群.人工神经网络[M].北京:北京邮电出版社,2006.
  • 3Jenkins B K,Tanguay A R. Handbook of Neural Computing and Neural Networks[M]. Boston: MIT Press,1995.
  • 4Bnlsabi A. Some analytical solutions to the general approximation problem for feed forward neural networks[J]. Neural Networks 1993(6): 991-996.
  • 5Setiono R,Leow W K.FERNN: An algorithm for fast extraction of rules from neural networks[J]. Applied Intelligence,2000, 12(1-2): 15-25.
  • 6XIA Min,FANG Jian-an,TANG Yang,et al. Dynamic depression control of chaotic neural networks for associative memory[J]. Neurocomputing, 2010(73),776-783.
  • 7OZ C,LEU M C. American sign language word recognition with a sensory glove using artificial neural networks[J].Engineering Applications of Artificial Intelligence,2011(4):1204-1213.
  • 8Singhal D, Swarup K S. Electricity price forecasting using artificial neural networks[J]. Electrical Power and Energy Systems,2011(3):550-555.
  • 9WU Wei,WANG Jian,CHENG Ming-song,et al. Convergence analysis of online gradient method for BP neural networks[J]. Neural Networks , 2011(24):91-98.
  • 10罗忠,谢永斌,朱重光.CMAC学习过程收敛性的研究[J].自动化学报,1997,23(4):455-461. 被引量:26

共引文献224

同被引文献41

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部