期刊文献+

考虑弯扭耦合运动的旋转带冠叶片非线性气动弹性分析 被引量:1

Nonlinear aeroelastic analysis of rotating shrouded blades under coupled bending and torsional vibration
下载PDF
导出
摘要 针对旋转叶片的气动弹性问题,将带叶冠的叶片简化为末端加质量块的均质悬臂梁。悬臂梁受到离心力和气动力作用,发生弯曲和扭转耦合振动变形。利用Hamilton原理建立了叶片的偏微分运动方程。对方程无量纲化,运用Galerkin方法对其离散,得到两自由度的非线性常微分方程。通过数值求解叶片颤振速度和极限环响应,并用谐波平衡法求解极限环响应与数值解进行对比。最后,讨论了结构参数对颤振速度和极限环响应幅值的影响。 In order to deal with the aerodynamic elasticity of rotating blades,a shrouded blade was simplified as a homogeneous cantilever beam with end mass.The cantilever beam was subjected to centrifugal force and aerodynamic force,and coupled bending and torsion vibration occured.The partial differential motion equation of the blade was established by using the Hamiltonian principle.After making the equation dimensionless,nonlinear ordinary differential equations with two degrees of freedom were obtained by using the Galerkin method.The flutter velocity and limit cycle oscillation response of the blade were solved by numerical method.The harmonic balance method was utilized to analyze the limit cycle oscillation responses,and the results were compared with the numerical solutions.The influences of structural parameters on the flutter velocity and limit cycle oscillation amplitudes were discussed.
作者 麻岳敏 曹树谦 郭虎伦 MA Yuemin;CAO Shuqian;GUO Hulun(Department of Mechanics,Tianjin University,Tianjin 300354,China;Tianjin Key Laboratory of Nonlinear Dynamics and Control,Tianjin 300354,China;National Demonstration Center for Experimental Mechanics Education,Tianjin University,Tianjin 300354,China)
出处 《振动与冲击》 EI CSCD 北大核心 2019年第2期67-74,共8页 Journal of Vibration and Shock
基金 国家重点基础研究发展计划资助(2015CB057400) 国家自然科学基金(11302145 11672201)
关键词 旋转带冠叶片 耦合颤振 弯扭变形 极限环(LCO) rotating shrouded blade coupled flutter bend and torsion deformation limit cycle oscillation(LCO)
  • 相关文献

参考文献9

二级参考文献100

  • 1蔡国平,洪嘉振.旋转运动柔性梁的假设模态方法研究[J].力学学报,2005,37(1):48-56. 被引量:54
  • 2王文亮 张锦 等.盘-叶耦合系统的固有模态分析-Cn群上对称结构的模态综合[J].固体力学学报,1988,(3):15-23.
  • 3Sarkar S,Bijl H.Nonlinear aeroelastic behavior of an oscillating airfoil during stall-induced vibration[J].Journal of Fluids and Structures,2008,24(6):757-777.
  • 4Chaviaropoulos P.Flap lead-lag aeroelastic stability of W/T blade sections[J].Journal of Wind Energy,1999,2:9 9-112.
  • 5Chaviaropoulos P K,Srensen N N,Hansen M O L,et al.Viscous and aeroelastic effects on wind turbine blades.The VISCEL project[J].Part II:aeroelastic stability investigations.Wind Energy,2003,6:387-403.
  • 6Kalles e B S.A low-order model for analysing effects of blade fatigue loadcontrol[J].Wind Energ,2006,9:421-436.
  • 7Lobitz D W.Aeroelastic stability predictions for a MW-sized blade[J].Wind Energy,2004,7:211-224.
  • 8Chaviaropoulos P.Flap/lead-lag aeroelastic stability of wind turbine blades[J].Wind Energ.,2001,4:183-200.
  • 9Kottapalli S B R,Friedmann P P.Aeroelastic stability and response of horizontal axis wind turbine blades[J].AIAA Journal,1979,17(12):1381-1389.
  • 10Hodges D H,Dowell E H.Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades[R].NASA TN D-7818,1974.

共引文献59

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部