期刊文献+

基于密度峰值聚类算法的模态参数识别 被引量:9

Modal parameters identification using the density peaks clustering algorithm
下载PDF
导出
摘要 稀疏成分分析是解决欠定盲源分离问题的一种有效方法,其主要分为两步:计算振型矩阵和重构单模态信号。在计算振型矩阵时,针对无法预知源信号数量和高阶振动模态混叠的问题,利用一种基于密度峰值聚类算法识别模态振型。相比于传统的聚类算法,该方法具有以下特点:①利用决策图直观地选出聚类中心和聚类数目;②算法可以自动分离噪声点,对噪声不敏感。在重构单模态信号时,利用可以快速重构稀疏信号的SL0算法,重构出单模态时频域信号,提取出各阶模态频率。通过振动结构仿真算例验证了该方法的有效性。 The sparse component analysis is an efficient approach to handle the underdetermined blind source separation,which contains two steps:calculating the mixing matrix and second,reconstructing the sources.In the paper,the modal shapes were calculated by using the Density Peaks Clustering Algorithm to deal with the cases that the number of sources cannot be known a priori and high order modes are overlapped with each other.Compared to the traditional clustering algorithms,it has two advantages:determining the centers of clusters according to the decision graphs directly and being insensitive to noises.The SL0 algorithm a sparse recovery algorithm,was used to reconstruct the sources.Then the frequency of each mode was identified from the sources in time-frequency domain.The effectiveness of the proposed method was validated via adopting a six degree-of-freedom vibration system as a simulation example.
作者 王飞宇 胡志祥 黄潇 WANG Feiyu;HU Zhixiang;HUANG Xiao(School of Civil Engineering,Hefei University of Technology,Hefei 230009,China;The 38th Research Institute of CETC,Hefei 230088,China)
出处 《振动与冲击》 EI CSCD 北大核心 2019年第2期172-178,共7页 Journal of Vibration and Shock
基金 国家自然科学基金(51408177)
关键词 模态分析 稀疏成分分析 密度峰值聚类(DPCA) SL0算法 modal analysis sparse component analysis density peaks clustering algorithm(DPCA) SL0 algorithm
  • 相关文献

参考文献3

二级参考文献28

  • 1欧国隆,谢益民,伍红,顾瑞军.马尾松磨木木素以及LCC的仿酶降解[J].中国造纸学报,2000,15(B12):68-74. 被引量:22
  • 2Belouchrani A, Abed-Meraim K, Cardoso J F, et al, A blind source separation technique using second order statistics[ J]. IEEE Trans. on Signal Processing, 1997, 45(2) : 434 -444.
  • 3Fortuna J, Capson D. ICA for position and pose measurement from images with occlusion [ C ]. in: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ( ICASSP02), 2002, 4 : 3604 - 3607.
  • 4Cichocki A. Blind signal processing methods for analyzing multichannel brain signals [ J ]. International Journal of Bioelectromagnitism ,2004,6 ( 1 ) :22 -27.
  • 5Madhow U. Blind adaptive interference suppression for directsequence CDMA [ J ]. Proceedings of the IEEE, 1998,86 (10) :2049 - 2069.
  • 6Oja E, Kiviluoto K, Malaroiu S. Independent component analysis for financial time series [ J ].in : Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000, AS-SPCC, The IEEE 2000, Lake Louise, Aha, 2000, 111-116.
  • 7Zang C, Friswel M I, Imregun M. Structural damage detection using independent component analysis [ J ]. Structural Health Monitoring,2004,3 ( 1 ) :69 - 83.
  • 8Peled R, Braun S, Zacksenhouse M. A blind decofivolution separation of multiple sources with application to bearing diagnostics [ J ]. Mechanical Systems and Signal Processing, 2005,19 (6) :1181 -1195.
  • 9Serviere C, Fabry P. Blind source separation of noisy harmonic signals for rotating machine diagnosis [ J ]. Journal of Sound and Vibration,2004,272 (1 -2) :317 -339.
  • 10Kerschen G, Poncelet F, Golinval J C. Physical interpretation of independent component analysis in structural dynamics [J]. Mechanical System and Signal Processing,2007,21: 1561 - 1575.

共引文献11

同被引文献80

引证文献9

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部