期刊文献+

非对称双激振器振动同步传动 被引量:2

Vibratory synchronization transmission of an asymmetrical two-exciter system
下载PDF
导出
摘要 在振动同步理论研究中,存在着一种特殊现象,无直接驱动源的激振器仍能跟随其他有源驱动的激振器进行同步运转,称之为振动同步传动。对同向回转且非对称布置的双激振器振动系统的振动同步传动理论进行了研究。采用拉格朗日方程建立振动系统的运动微分方程。应用小参数平均法获得振动系统的频率俘获方程,进而获得系统实现振动同步传动的同步性判据及振动同步传动状态的稳定性判据。根据理论结果对系统进行数值分析与讨论,得到振动系统的运动选择特性;最后,对该振动系统样机进行试验,验证了理论分析的正确性。 In study on the vibration synchronization theory,there is a specific phenomenon that an exciter without a directly driving source can follow another active drive exciter to operate synchronously.This phenomenon is called the vibratory synchronization transmission.Here,the theory of vibratory synchronization transmission for an asymmetrical two-exciter system was studied.The motion equation of the vibrating system was derived with Lagrange equation.The average method of small parameters was adopted to deduce the frequency capture equation of the vibrating system.Then the criterion of synchronism for the system to realize the vibratory synchronization transmission and the criterion of stability for vibratory synchronization transmission state were obtained.According to the theoretical results,the system was numerically analyzed and discussed to get the motion selection characteristics of the system.Finally,the prototype of this vibrating system was tested to verify the correctness of the theoretical analysis.
作者 顾大卫 刘云山 张居乾 闻邦椿 GU Dawei;LIU Yunshan;ZHANG Juqian;WEN Bangchun(Automation,Northeastern University,Shenyang 110819,China;Guidao Jiaotong Polytechnic Institute,Shenyang 110023,China)
出处 《振动与冲击》 EI CSCD 北大核心 2019年第1期37-43,64,共8页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(51375080 51675090) 中央高校基本科研业务费研究生科研创新项目(N150306002)
关键词 振动同步传动 激振器 非对称分布 同步性 稳定性 vibratory synchronization transmission exciter asymmetrical distribution synchronism stability
  • 相关文献

参考文献7

二级参考文献38

  • 1ZHAO ChunYu, WEN BangChun & ZHANG XueLiang School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, China.Synchronization of the four identical unbalanced rotors in a vibrating system of plane motion[J].Science China(Technological Sciences),2010,53(2):405-422. 被引量:12
  • 2方锦清.非线性系统中混沌控制方法、同步原理及其应用前景(二)[J].物理学进展,1996,16(2):137-202. 被引量:117
  • 3彭琼梅,尹友中.自同步直线振动筛的动力学分析及实际应用[J].建设机械技术与管理,2005,18(9):84-87. 被引量:3
  • 4闻邦椿 林向阳.振动同步传动及其工业应用[J].机械工程学报,1984,20(3):26-41.
  • 5赵春雨.多轴传动机械系统的同步控制及智能控制研究(学位论文)[M].沈阳:东北大学机械学院,1997..
  • 6[1]Belkhman II.Synchronization in Science and Technology.New York:ASME Press,1988
  • 7[2]Blekhman II,Fradkov A,Tomchina O,et al.Self-synchronization and controlled synchronization:general definition and example design.Mathematics and Computers in Simulation,2002,58 (4~6):367~384
  • 8[3]Dimentberg M,Cobb E,Mensching J.Self-synchronization of transient rotations in multiple shaft systems.Journal of Vibration and Control,2001,7 (2):221~232
  • 9[5]Pecora L M.Synchronization in chaotic systems.Physical Review Letters,1990,64(8):821~824
  • 10[6]Nakata S,Miyata T,Ojima,et al.Self-synchronization in coupled salt-water oscillators.Physica D,1998,115:313~320

共引文献76

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部