期刊文献+

基于量子加权门限重复单元神经网络的性态退化趋势预测 被引量:4

Performance degradation trend prediction method for rotating machinery based on QWGRUNN
下载PDF
导出
摘要 提出基于量子加权门限重复单元神经网络(Quantum Weight Gated Recurrent Unit Neural Network,QWGRUNN)的旋转机械性态退化趋势预测方法。采用小波降噪-排列熵法构建性态退化指标集,将该指标集输入QWGRUNN完成旋转机械性态退化趋势预测。QWGRUNN在门限重复单元(Gated Recurrent Unit,GRU)基础上引入量子位来表示网络权值和活性值并构造量子相移门以实现权值量子位和活性值量子位的更新,改善了网络泛化能力,进而提高了所提出的性态退化趋势预测方法的预测精度;采用与自身结构相适应的动态学习参数,改善了网络收敛速度,进而提高了所提出的预测方法的计算效率。滚动轴承性态退化趋势预测实例验证了该方法的有效性。 A novel performance degradation trend prediction method of rotating machinery was proposed based on the quantum weighted gated recurrent unit neural network(QWGRUNN).Firstly,the performance degradation index set for rotating machinery was constructed by using the wavelet denoise-permutation entropy method.Then,this index set was input in to QWGRUNN to accomplish the performance degradation trend prediction of rotating machinery.On the basis of gated recurrent unit(GRU),qubits were introduced in QWGRUNN to represent network weights and activity values,quantum phase-shift gates were constructed to update weight-qubits and activity-qubits,and improve the network generalization capacity and the performance degradation trend prediction accuracy of the proposed method.Finally,the dynamic learning parameter appropriate to the structure of QWGRUNN was adopted to improve the network convergence speed and the computation efficiency of the proposed method.The example of performance degradation trend prediction for rolling bearing verified the effectiveness of the proposed method.
作者 李锋 向往 王家序 汤宝平 LI Feng;XIANG Wang;WANG Jiaxu;TANG Baoping(School of Manufacturing Science and Engineering,Sichuan University,Chengdu 610065,China;School of Aeronautics and Astronautics,Sichuan University,Chengdu 610065,China;State Key Lab of Mechanical Transmission,Chongqing University,Chongqing 400044,China)
出处 《振动与冲击》 EI CSCD 北大核心 2019年第1期123-129,158,共8页 Journal of Vibration and Shock
基金 中国博士后科学基金第60批面上资助项目(2016M602685) 机械传动国家重点实验室开放基金(SKLMT-KFKT-201718) 四川大学泸州市人民政府战略合作项目(2018CDLZ-30)
关键词 量子加权门限重复单元神经网络 量子计算 排列熵 趋势预测 旋转机械 quantum weighted gated recurrent unit neural network(QWGRUNN) quantum computation permutation entropy trend prediction rotating machinery
  • 相关文献

参考文献10

二级参考文献127

共引文献175

同被引文献45

引证文献4

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部