期刊文献+

煤层气井产能预测及提高产能方法 被引量:2

Coalbed methane well productivity prediction and productivity enhancement method
下载PDF
导出
摘要 针对煤层气井产能预测需求,结合实例,采用多元回归分析方法建立了煤层气井产能预测模型,并对该模型与GM(1,1)模型的应用效果展开了比较。从研究结果来看,采用多元回归模型可以实现煤层气井产能精确预测,得知在流压增大的情况下,日产气量会随之降低,还要采取注气增产技术加大生产压差,以达到提高产能的目的。 In view of the demand of CBM well productivity prediction,a CBM well productivity prediction model is established by means of multiple regression analysis,and its application effect is compared with GM(1,1)model.From the research results,the multiple regression model can be used to accurately predict the productivity of CBM wells.The daily gas production will decrease with the increase of flowing pressure.Gas injection technology should be adopted to increase production pressure difference so as to improve productivity.
作者 韩勇 HAN Yong(Shanxi Lu'an Jinyuan Coalbed Methane Development Co.,Ltd.,Changzhi Shanxi 046200,China)
出处 《山西化工》 2018年第6期114-116,共3页 Shanxi Chemical Industry
关键词 煤层气井 产能预测 产气量 井底流压 coalbed methane well productivity prediction gas production bottom hole flow pressure
  • 相关文献

参考文献4

二级参考文献33

  • 1HUANGWei,NAKAMORIYoshiteru,WANGShouyang.A GENERAL APPROACH BASED ON AUTOCORRELATION TO DETERMINE INPUT VARIABLES OF NEURAL NETWORKS FOR TIME SERIES FORECASTING[J].Journal of Systems Science & Complexity,2004,17(3):297-305. 被引量:10
  • 2陶树.2011.沁南煤储层渗透率动态变化效应及气井产能响应[D].北京:中闰地质大学:27-43.
  • 3Chen Huwei, Lv Jinguo. Valuation method of building a geological deposit model based on BP neural network[J]. Journal of Liaoning Technical University:Natural Science,2009,28(4):537-540.
  • 4Wu Caifang, Zeng Yong, Zhang Zixu.Application of auto-adapting neural networks in forecasting gas content with geological factors[J]. Journal of Liaoning Technical University:Natural Science,2003,22(5):609-612.
  • 5Zu Daqi,Shi Hui. Principle and application of artificial neural network [M].Beijing: Science Press,2006:17-20.
  • 6Dong Changhong. The Matlab Neural networks and application [M].Beijing: National Defence of Industry Press,2007:64-106.
  • 7Zhang Liangyun, Cao Jing, Jiang Shizhong. Neural network practical guide[M].Beijing: Mechanical Press,2-56.
  • 8Cong Shuang. Object-oriented neural-network design tool and its application[M].Hefei: University of Science and Technology of China, 2009:63-84.
  • 9Shi Zhongzhi. Artificial neural network[M].Beijing: Higher Education Press,2009:102-156.
  • 10Ju Qin, Hao Zhenchun, Yu Zhongbo. Study on rainfall-runoff simulation based on artificial neural networks[J].Joumal of Liaoning Technical University:Natural Science,2007,26(6):940-943.

共引文献75

同被引文献35

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部