期刊文献+

基于自适应学习的心律失常心拍分类方法 被引量:1

Adaptive learning-based method for classification of arrhythmic heartbeats
下载PDF
导出
摘要 心律失常是因心脏疾病引起的心电活动中的异常症状,早期心室收缩(PVC)是由异位心跳引起的常见心律失常形式。通过心电图(ECG)信号检测PVC对于预测可能的心力衰竭具有重要意义。本文提出一种面向PVC心拍分类的心电信号分类算法,重点研究基于自适应学习的PVC异常心拍分类特征提取模型,通过计算心拍关联后验概率,结合领域专家标注信息训练分类器,提高整体分类效果。实验采用MIT-BIH心律失常数据库的ECG数据,研究结果表明所提方法针对非线性流形结构数据,能够有效提升小样本心拍自适应分类器的准确性。 Arrhythmia is a common electrocardiogram(ECG)abnormality in heart diseases,among which premature ventricular contraction(PVC)is a widespread arrhythmia caused by ectopic heartbeat.The detection of PVC by ECG signals is significant for predicting possible heart failure.Herein an ECG signal classification algorithm for PVC heartbeat classification is proposed.The feature extraction model of PVC abnormal heartbeat classification based on adaptive learning is mainly studied.The posterior probability of heartbeat correlation is calculated and then combined with information classifier to improve the classification performance.The ECG data adopted in this study are from MIT-BIH arrhythmia database.The research results show that the proposed algorithm can effectively improve the accuracy of adaptive classifier for small-sample heart beats of nonlinear manifold data.
作者 王凯 杨枢 WANG Kai;YANG Shu(Department of Health Management,Bengbu Medical College,Bengbu 233030,China;School of Information and Computer,HefeiUniversity of Technology,Hefei 233009,China)
出处 《中国医学物理学杂志》 CSCD 2019年第1期92-96,共5页 Chinese Journal of Medical Physics
基金 安徽省高校人文社会科学重点研究基金(SK2018A1064 SK2018A1072) 安徽省高校自然科学重点研究基金(KJ2018A1007) 蚌埠医学院科技发展基金(BYKF1717)
关键词 心电图 自适应分类器 特征提取 分类 electrocardiogram adaptive classifier feature extraction classification
  • 相关文献

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部