期刊文献+

Sm_2Ce_2O_7-Gd_2Zr_2O_7复合材料制备及热导率 被引量:2

Preparation and Thermal Conductivity of Sm_2Ce_2O_7-Gd_2Zr_2O_7 Composite Materials
下载PDF
导出
摘要 目的探讨了Gd_2Zr_2O_7的颗粒度和含量对(Sm_2Ce_2O_7)1-x(Gd_2Zr_2O_7)x复合材料热导率的影响。方法用纳米级和微米级粉体制备了两个系列的(Sm_2Ce_2O_7)1-x(Gd_2Zr_2O_7)x复合材料。用X射线衍射技术分析了材料的相组成,用扫描电镜观察了复合材料的显微形貌,用纽曼科普定律计算了复合材料的比热,用激光脉冲法测试了材料的热扩散系数。根据比热、密度和热扩散系数计算了复合材料的热导率,并根据最终热导率结果,分析了Gd_2Zr_2O_7颗粒度和含量对复合材料热导率的影响。结果所合成的粉体均具有单一的萤石晶体结构,纳米级Gd_2Zr_2O_7粉体最大比表面积为15.413 m^2/g,微米级Sm_2Ce_2O_7粉体最小比表面积为0.226 m^2/g。所制备的两个系列的(Sm_2Ce_2O_7)1-x(Gd_2Zr_2O_7)x复合材料也表现出单一的萤石晶体结构,但晶粒大小不均匀。结论当x=0.5时,纳米粉体制备的复合材料存在明显的纳米晶。微米级Gd_2Zr_2O_7对复合材料声子热导率抑制不明显,但可以抑制高温光子热导率;纳米级Gd_2Zr_2O_7的引入可明显降低复合材料的声子热导率,但对高温光子热导率抑制不明显。两个系列复合材料的热导率均低于YSZ。 The work aims to study the influence of content and particle size of Gd2Zr2O7 on the thermal conductivity of(Sm2Ce2O7)1?x(Gd2Zr2O7)x composite materials.Two series of(Sm2Ce2O7)1?x(Gd2Zr2O7)x composite materials were prepared by nano and micron powders.The phase-structure of composite materials was identified by X-ray diffraction method.The microstructure of composite materials was observed by scanning electron microscope.The specific heat capacity of composite materials was computed by Neumann-Kopp rule,and the thermal diffusivity of composite materials was measured by laser-flash method.Finally,the thermal conductivity of composite materials was obtained in light of the density,specific heat capacity and thermal diffusivity.The influence of particle size and content of Gd2Zr2O7 on thermal conductivity of composite materials was analyzed according to the final thermal conductivity results.The synthesized powders show single defect-fluorite structure.The largest specific surface area of nano-scale Gd2Zr2O7 is about 15.413 m2/g and the minimum specific surface area for micro-scale Sm2Ce2O7 is about 0.226 m2/g.These two series of(Sm2Ce2O7)1?x(Gd2Zr2O7)x composite materials also exhibit single fluorite crystal-lattice,while the grain size is not uniform.When x=0.5,the typical nano-scale grains are found in the composite materials prepared by nano-powder.The addition of micron-scale Gd2Zr2O7 does not influence the phonon-thermal conductivity obviously,but inhibits the photon thermal conductivity.The introduction of nano-scale Gd2Zr2O7 can reduce the phonon thermal conductivity of composite materials,while cannot inhibit the photon thermal conductivity obviously.The thermal conductivity of two series of composite materials is lower than YSZ.
作者 段群鹏 杨树森 张文宇 董鹏 谢秋阳 张红松 郭亚东 DUAN Qun-peng;YANG Shu-sen;ZHANG Wen-yu;DONG Peng;XIE Qiu-yang;ZHANG Hong-song;GUO Ya-dong(School of Material and Chemical Engineering,Henan University of Engineering,Zhengzhou 451191,China;School of Mechanical Engineering,Henan University of Engineering,Zhengzhou 451191,China;;Department of Railway Safety and Security,Railway Police College,Zhengzhou 450002,China)
出处 《表面技术》 EI CAS CSCD 北大核心 2019年第1期77-82,共6页 Surface Technology
基金 河南省高校科技创新团队支持计划项目(18IRTSTHN005) 河南省高等学校重点科研项目(19A480001)~~
关键词 (Sm2Ce2O7)1.x(Gd2Zr2O7)x复合材料 溶胶-凝胶法 YSZ 热导率 (Sm2Ce2O7)1-x(Gd2Zr2O7)x composite materials sol-gel method YSZ thermal conductivity
  • 相关文献

参考文献1

二级参考文献50

  • 1张慧玲,范群波,王富耻,张锋,张红松.稀土锆酸盐焦绿石相结构的第一原理计算[J].稀有金属材料与工程,2007,36(A02):556-559. 被引量:4
  • 2HARWICKE C U, LAU Y C. Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation A: A Review[J]. Journal of Thermal Spray Technology, 2013, 6 564-576.
  • 3BAKER M. Influence of Materials Models on the Stress State in Thermal Barrier Coating Simulations[J]. Surface and Coatings Technology, 2014, 240: 301-310.
  • 4HUA Z X, YU H Z, MING X Z, et al. Thermal Shock Behavior of Toughened Gadolinium Zirconia/YSZ Double-ceramic-layered Thermal Barrier Coatings[J]. Journal of Alloys and Compounds, 2014, 593: 50-55.
  • 5WINTER M R, CLARJE D R. Oxides Materials with Low Thermal Conductivity[J]. Journal of the American Ceramic Society, 2007, 90: 533-540.
  • 6KUN L, JIAN J T, YU B, et al. Particle in Flight Behavior and Its Influence on the Microstructure and Mechanical Property of Plasma Sprayed La2Ce2O7 Thermal Barrier Coatings[J]. Materials Science and Engineering A, 2015, 625: 177-185.
  • 7MAUER G, JARLIGO M O, MACK D E, et al. Plas- ma-sprayed Thermal Barrier Coatings: New Materials, Processing Issues, and Solutions[J]. Journal of Thermal Spray Technology, 2013, 6: 646-658.
  • 8KUMAR V, BALASSUBRAMANIAN K. Progress Up- date on Failure Mechanisms of Advanced Thermal Barrier Coatings: A Review[J]. Progress in Organic Coatings, 2016, 90: 54-82.
  • 9RAN H L, AN C W, GUANG C Z, et al. Thermo-physical Properties of Rare Earth Hexaaluminates LnMgAl11O10 (Ln: La, Pr, Nd, Sm, Eu, and Gd) Magnetoplumbite for Advanced Thermal Barrier Coatings[J]. Journal of the European Ceramic Society, 2015, 35: 1297-1305.
  • 10XU Z H, ZHOU X, WANG K, et al. Thermal Barrier Coatings of New Rare Earth Composite Oxide by EB- PVD[J]. Journal of Alloys and Compounds, 2014, 587: 126-132.

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部