摘要
采用气相色谱-质谱联用技术对不同霉变程度小麦的挥发性气体进行检测,利用主成分分析法对检出的气体成分进行分析能有效地将不同霉变程度的小麦进行区分,为霉变小麦的可视化鉴别提供实验基础;采用嗅觉可视化技术与最近邻域和线性判别结合的方法,对不同霉变程度小麦进行检测,建立的最近邻域模型和线性判别模型的识别率分别为95.83%和85.40%。结果表明,嗅觉可视化技术可实现对霉变小麦快速、无损、准确检测,具有很大的应用潜力。
The volatile organic compounds of wheat with different mildew degrees were detected using gas chromatographymass spectrometry (GS-MS). Principal components analysis (PCA) of the volatile organic compounds was performed to effectively distinguish the different degrees of moldy wheat in order to provide an experimental basis for visual identification of moldy wheat. Olfactory visualization as a rapid and convenient method was employed to detect fresh and moldy wheat with different mildew degrees, and the data obtained were processed by PCA followed by linear discriminant analysis (LDA) and K-nearest neighbor (KNN) algorithm. The KNN and LDA models gave a recognition rate of 95.83% and 85.40%, respectively. These results conclusively show that olfactory visualization technology can allow fast, non-destructive and accurate detection of moldy wheat.
作者
严松
林颢
YAN Song;LIN Hao(School of Food&Biological Engineering,Jiangsu University,Zhenjiang 212013,China)
出处
《食品科学》
EI
CAS
CSCD
北大核心
2019年第2期275-280,共6页
Food Science
基金
"十三五"国家重点研发计划重点专项(2016YFD0401205-3)
国家博士后基金项目(2016M601746)
关键词
霉变小麦
挥发性气体
嗅觉可视化
moldy wheat
volatile organic compounds
olfactory visualization