摘要
设0-1域上多项式f(x)=x^m+b_(m-1)x^(m-1)+…+b_1x+1,又设g(x)=x^n+a_(n-1)x^(n-1)+…+a_1x+1是0-1域上不可约多项式,并假定m≥n。基于整除关系式g(x)|f(x)看成由f(x)系数产生的向量经由g(x)系数产生的向量线性表出的基础上,设计了求解最小正整数m的算法,使得g(x)不仅有g(x)|x^m-1,而且还可判别g(x)是否是本原多项式。
Let f(x)=x^m+bm-1x^m-1 +…+b1x+1 be a binary polynomial.Also let g(x)=x^n+an-1x^n-1 +…+a1x+1 be an irreducible binary polynomial,and suppose that m≥n.We view the relation g(x)|f(x) is that the vector produced by the coefficients of polynomial f(x) is a linear representation of those vectors produced by the coefficients of polynomial g(x),and further develop an algorithm so as to find the smallest positive integer m such that g(x) has not only g(x) x^m-1,but also is determined whether or not the primitive binary polynomial.
作者
张静远
占顺
ZHANG Jingyuan;ZHAN Shun(School of Science,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处
《杭州电子科技大学学报(自然科学版)》
2019年第1期100-102,共3页
Journal of Hangzhou Dianzi University:Natural Sciences
关键词
0-1域
不可约多项式
本原多项式
0-1 field
irreducible polynomial
primitive polynomial