期刊文献+

基于预测控制的无人驾驶车辆爆胎转向控制 被引量:8

Model Predictive Control-Based Steering Control of Unmanned Ground Vehicle with Tire Blowout
下载PDF
导出
摘要 针对无人驾驶车辆爆胎后的转向控制问题,考虑实时性和控制性能的要求,提出了连续时域自适应预测控制方法.爆胎使得滚动阻抗系数和侧偏刚度等轮胎参数在短时间内产生剧烈的变化,从而导致转向控制失灵,进而引起无人驾驶车辆偏离道路甚至侧翻.为此,对无人驾驶车辆标称动力学模型进行反馈线性化,结合泰勒展开预测无人驾驶车辆的运动趋势.在此基础上,将爆胎引起的参数变化转化为不确定,利用模糊系统万能逼近原理,通过设计自适应模糊观测器进行在线观测.并同时考虑控制输入的饱和约束,利用连续预测控制方法设计解析控制律,以满足系统控制的实时性要求.最后,与传统非线性预测控制以及PID控制进行了仿真对比.从仿真结果可以看出,当车辆发生爆胎后,轮胎滚动阻抗系数瞬时增大了29倍、侧偏刚度瞬时降低了72%,如不施加额外的转向控制作用,无人驾驶车辆将在1 s内偏离原车道约5.5 m.而施加本文所提方法后,系统的实时性和控制性能均优于给定传统算法.一方面,与非线性预测控制和PID控制相比,所提方法计算速度提高了约150倍,计算时间缩短约50%;另一方面,在给定的控制输入饱和约束范围内,所提方法仍能够控制无人驾驶车辆在爆胎后只发生微小偏移,偏移量仅为传统算法的2.5%左右. To control the steering of unmanned ground vehicles with tire blowout,we designed a continuous-time adaptive model predictive control method that meets the requirements of real-time and control performance.In a very short period of time,tire blowouts cause drastic changes in the tire parameters,including the rolling resistance coefficient and cornering stiffness,which lead to steering control failure and deviation of the unmanned ground vehicle from the lane of travel or even a rollover.In this paper,we linearize a nominal dynamic model of an unmanned ground vehicle using feedback linearization,and predict the motion trend of the vehicle by Taylor expansion.On this basis,the parameter changes caused by the tire blowout are transformed into uncertainties,so we designed an adap-tive fuzzy observer to perform on-line observation based on the universal approximation theorem of fuzzy systems.Using control input saturation constraints,we designed an analytic control law using continuous model predictive control to satisfy the real-time requirement of the control system.Finally,we performed simulations to compare the performance of the proposed method with those of traditional nonlinear model predictive control and PID control.The simulation results showed that,after a tire blowout,the tire rolling resistance coefficient experiences an instantaneous 29-fold increase,and the cornering stiffness experiences an instantaneous decrease of 72%.Without additional steering control,the unmanned ground vehicle would deviate from the original lane by about 5.5 meters in one second.We validated that the system using the proposed method exhibited better real-time and control performance than those using the traditional algorithms.We found the proposed method to improve the computing speed 150-fold and to cut the computing time 50%,respectively,compared to the nonlinear model predictive control and PID algorithms.In addition,the proposed method can guarantee that the vehicle experiences only a slight deviation from its lane of travel after a tire blowout within the given control input saturation constraints,with the deviation being only about 2.5%of that of the traditional algorithm.
作者 胡超芳 曹磊 赵凌雪 王娜 Hu Chaofang;Cao Lei;Zhao Lingxue;Wang Na(School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China;Key Laboratory of System Control and Information Processing of Ministry of Education,Shanghai 200240,China;Key Laboratory of Micro Opto-Electro Mechanical System Technology of Ministry of Education,Tianjin University, Tianjin 300072,China;School of Electrical Engineering and Automation,Tianjin Polytechnic University,Tianjin 300387,China)
出处 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2019年第5期468-474,共7页 Journal of Tianjin University:Science and Technology
基金 国家自然科学基金资助项目(61773279) 系统控制与信息处理教育部重点实验室开放课题基金资助项目(Scip201608) 微光机电系统技术教育部重点实验室(天津大学)开放基金资助项目(MOMST 2016-4)~~
关键词 无人驾驶 爆胎 预测控制 模糊观测器 self-driving tire blowout model predictive control(MPC) fuzzy observer
  • 相关文献

同被引文献93

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部